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Abstract

This paper is devoted to analytic vector fields near an equilibrium
for which the linearized system is split in two invariant subspaces E0

(dim m0), E1 (dim m1). Under light diophantine conditions on the
linear part, we prove that there is a polynomial change of coordinate
in E1 allowing to eliminate, in the E1 component of the vector field,
all terms depending only on the coordinate u0 ∈ E0, up to an ex-
ponentially small remainder. This main result enables to prove the
existence of analytic center manifolds up to exponentially small terms
and extends to infinite dimensional vector fields. In the elliptic case,
our results also proves, with very light assumptions on the linear part
in E1, that for initial data very close to a certain analytic manifold, the
solution stays very close to this manifold for a very long time, which
means that the modes in E1 stay very small.
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remainders; center manifolds
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1 Introduction

Let us consider an analytic vector field in the neighborhood of an equilibrium
which we take at the origin. A natural idea is to try to uncouple a subset
of coordinates from the other ones, by using a change of variables. This
is used in particular since Poincaré and Dulac, and this is one of the main
tool in the search of invariant manifolds of vector fields. Eliminating most
of components of the vector field, expecting to only keep the relevant ones
for the dynamics, is precisely the idea of center manifold reduction, which
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is widely used in many physical systems, to simplify the study of the dy-
namics. However this reduction is only valid when we want to eliminate the
hyperbolic part of the vector field and it has the defect to kill the analyticity
after the reduction process. For systems fully elliptic near the origin, it may
be expected to use a change of variables to uncouple all oscillatory modes.
If this were possible, and if the initial data does not excite some modes,
these ones would not be awaken for all times. Unfortunately, this is not
possible in general, even though for hamiltonian systems, with suitable non
resonant eigenvalues of the linearized system, it is nearly the case (Arnold
diffusion between invariant tori corresponding to the ”normal form” system
with uncoupled modes).

In the present work, we consider systems for which the linearized system
is split in two invariant subspaces E0 (dim m0), E1 (dim m1). With light
assumptions on the linear part, our main result is that there is a polynomial
change of coordinate in E1 allowing to eliminate, in the E1 component of the
vector field, all terms depending only on the coordinate u0 ∈ E0, up to an
exponentially small remainder (see Theorem 1). The proof of this theorem
is based on a Gevrey estimate of the divergence of the remainder, which can
be exponentially small by an optimal choice of the degree of the polynomial
change of coordinates.

Gevrey estimates of the divergence of remainders, to get exponentially
small upper bounds after an optimal choice of the order, were already used
in the theory of normal forms for Hamiltonian systems in action-angle coor-
dinates [2], [3], [14] following the pioneering work of Nekhoroshev [11, 12].
A similar result of exponential smallness of the remainder was also obtained
by Giorgilli and Posilicano in [4] for a reversible system with a linear part
composed of harmonic oscillators. For an extension of the result of normal
forms with an exponentially remainder to any analytic vector fields with
semi simple linear part see [7].

Direct normalization up to exponentially small terms is not available for
vector fields studied in this paper since L1 is not assumed to be diagonaliz-
able. However we can eliminate from the E1 component of the vector field
all terms depending only on the coordinate u0 ∈ E0, up to an exponentially
small remainder.

A first application of this result is when the linear part in E1 is hyper-
bolic, while the linear part in E0 has all its eigenvalues on the imaginary
axis. It is well known that the center manifold reduction applies for small
bounded solutions [8], which then lie on a manifold of same dimension as E0.
It is also well known that this manifold is in general not analytic [13], [20],
[1], [16]. Our result allows to obtain a center manifold which is the graph of
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a function sum of a polynomial of degree p = O(δ−b) and an exponentially

small function of order O(e−c/δb
) where δ is the size of the ball where we

study the solutions, and c and b are positive numbers (see Theorem 5). It
results in particular that the loss of analyticity is located in exponentially
small terms. This result extends in infinite dimensional cases, then appli-
cable in particular for a large class of PDE’s. So combining, this result on
center manifolds with the normal form theorem with exponentially small re-
mainder [7] for the E0 component (L0 is diagonalizable), we can transform
(1) into a new system with a ”simplified” analytic leading part, perturbed by
exponentially small terms. Such a transformation can be very useful when
dealing with exponentially small phenomena (see [10]).

Another application, important in particular for engineering systems, is
when the two linear subsystems in E0 and E1 have their eigenvalues on
the imaginary axis. In particular, this situation happens for non linear vi-
brations of structures. Our result gives a sort of justification of a popular
elimination process made in a formal way (see for example [9], [15], [17]),
which allows to roughly state that for a class of initial data which do not
excite in some sense the high frequencies (corresponding to E1), then these
ones are not awaken for all times....Our results prove, with very light dio-
phantine assumptions (4) on the linear part in E1, that for initial data very
close to a certain analytic manifold, the solution stays very close to this
manifold for a very long time, which means that the modes in E1 stay very
small (see theorem 8). This type of result is related to Arnold’s diffusion for
Hamiltonian systems (see a related result in [5]), while it should be noticed
that we do not assume our system to be Hamiltonian, our assumptions on
the eigenvalues being much lighter that usually done on such systems. In
particular the linear part in E1 is not assumed to be diagonalizable. Finally,
notice the particular case studied in the same spirit by Groves and Schneider
[6], for which E0 is 2-dimensional and corresponds to a double eigenvalue in
0, while E1 corresponds to eigenvalues all imaginary. In this example there is
no need of the diophantine condition (4), but E1 is infinite dimensional and
the result we obtain here needs to be adapted. In [18], Touzé and Amabili
consider the damped case with an external periodic forcing. They assume
that high frequency modes lie at a growing distance from the imaginary axis.
Our method might be used in such a case, to rigorously prove that the high
frequency modes do not awake as t goes to infinity, provided certain non
resonance condition between the forcing frequency and natural frequencies
are realized, and provided the initial data is taken on a certain manifold in
the spirit of Theorem 8.
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2 Main results

We gather in this section the main theorems proved in this paper. Our main
theorem is the following

SplittingThm Theorem 1 Consider the following system in R
m (resp. C

m)

du

dt
= Lu + R(u), (1) basicSyst

where u(t) ∈ R
m (resp. C

m), L is a linear operator, and R is analytic in a
neighborhood of the origin, such that

R(u) =
∑

2≤k

Rk[u
(k)], (2) ExpR

where Rk is a k - linear symmetric map on (Rm)k (resp. (Cm)k) satisfying

||Rk[u1, u2, · · · , uk]|| ≤ c

ρk
||u1|| · · · ||uk||, (3) AnalyticR

for a certain radius of convergence ρ > 0 (here [u(k)] means the k - uple of
vectors [u, u, · · · , u]). Assume that the linear operator L is the direct sum
of two linear operators L0 on E0 (dim m0), and L1 on E1 (dim m1), such

that L0 is diagonalizable with eigenvalues λ
(0)
1 , · · · , λ

(0)
m0 and that there exist

constants γ > 0, τ ≥ 0 such that

|〈α, λ(0)〉 − λ
(1)
j | ≥ γ

|α|τ (4) diophCond

holds for any α ∈ N
m0\{0}, and any eigenvalue λ

(1)
j of L1.

Then there exists a polynomial Φ : E0 → E1 of degree p = O(δ−b) such
that the change of variables in E1

u1 = v1 + Φ(u0) (5) Change Var

transforms the system (1) into the following system in E0 × E1 :

du0

dt
= L0u0 + R(0)(u0, v1), (6) newSyst

dv1

dt
= L1v1 + R(1)(u0, v1) + ρ(u0),

in which R(0),R(1), ρ are analytic in their arguments, and where

R(0)(u0, u1) = P0R(u0 + v1 + Φ(u0)),
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P0 being the projection on E0 which commutes with L, and

R(1)(u0, v1) = O(||v1||(||u0|| + ||v1||)), (7) EqRun

sup
||u0||≤δ

||ρ(u0)|| ≤ Me
− w

δb , (8) Eqrho

with M,w > 0 depending only on τ,m0, c, ρ, L1 and

b =
1

1 + ντ

where ν is the maximal index (size of Jordan blocks) of eigenvalues of L1.

Remark 2 Notice that the constants M and w do not depend on the di-
mension m1 of the subspace E1 if L1 is a priori in Jordan form. This allows
to consider systems with large (even infinite) dimensions.

Remark 3 Since all the norms are equivalent on R
m (resp. C

m), (7),(8)
remains true for any norm on R

m (resp. C
m). A change of norm simply

change the values of M and w. So, estimates (7),(8) remain true under
linear change of coordinates up to a change of values of M and w. Hence
without loss of generality we can assume that the complexified space of E0

and E1, still denoted by E0 and E1 read respectively E0 = C
m0 × (0, · · · , 0)︸ ︷︷ ︸

m1 times

and E1 = (0, · · · , 0)︸ ︷︷ ︸
m0 times

×C
m1 and that in the canonical basis of C

m, L0 is

diagonal and L1 is under Jordan normal form.

We deduce from the above theorem a corollary which deals with vector
fields depending on parameters.

perturbed vector field Corollary 4 Consider the following system in R
m (resp. C

m)

du

dt
= Lu + R(u, µ), (9) perturbed syst

where u(t) ∈ R
m (resp. C

m), L is a linear operator, and R is analytic in a
neighborhood of the origin in R

m × R
q (resp. C

m × R
q) and such that

R(0, µ) = 0, DuR(0, 0) = 0. (10) 0staysSolu

Assuming the same hypothesis on L as in Theorem 1, and that 0 is not
eigenvalue of L1, then there exists a polynomial Φ : E0 ×R

q → E1 of degree
p = O(δ−b) such that the change of variables in E1

u1 = v1 + Φ(u0, µ)
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transforms the system (1) into the following system in E0 × E1 :

du0

dt
= L0u0 + R(0)(u0, v1, µ),

dv1

dt
= L1v1 + R(1)(u0, v1, µ) + ρ(u0, µ),

in which R(0),R(1), ρ are analytic in their arguments, and where

R(0)(u0, u1, µ) = P0R(u0 + v1 + Φ(u0, µ), µ),

P0 being the projection on E0 which commutes with L, and

R(1)(u0, v1, µ) = O(||v1||(||u0|| + ||v1|| + ||µ||)),

sup
||u0||+||µ||≤δ

||ρ(u0, µ)|| ≤ Me
− w

δb ,

with M,w > 0 depending only on τ,m0, c, ρ, L1 and b is as in Theorem 1.

Another application of theorem 1, is the existence of analytic center
manifolds up to exponentially small term. More precisely, consider the case
when the spectrum of L0 ⊂ iR, and L1 is hyperbolic, i.e. the eigenvalues of
L1 lie at a distance γ > 0 from the imaginary axis. Then in finite dimension
we have the following

centermanifoldRm Theorem 5 (Center manifold analytic up to exp. small terms)
Consider the analytic system (1) in R

m and assume that L0 is diagonalizable
with all its eigenvalues on the imaginary axis, and assume that L1 has its
eigenvalues at least at a distance γ > 0 from the imaginary axis.

Then for any k ≥ 2, there exists a polynomial Φ : E0 → E1 of degree
O(1/δ), with Φ(0) = 0, DΦ(0) = 0, a neighborhood O of 0 in R

m, and a

map Ψ ∈ Ck(E0, E1) which is O(e−
C
δ ) for ||u0||E0 ≤ δ and a certain constant

C > 0, such that the manifold

M0 = {u0 + Φ(u0) + Ψ(u0) ; u0 ∈ E0} (11)

has the following properties.

(a) M0 is locally invariant, i.e., if u is a solution of (1) satisfying u(0) ∈
M0 ∩ O and u(t) ∈ O for all t ∈ [0, T ], then u(t) ∈ M0 for all
t ∈ [0, T ].
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(b) M0 contains the set of bounded solutions of (1) staying in O for all
t ∈ R, i.e., if u is a solution of (1) satisfying u(t) ∈ O for all t ∈ R,
then u(0) ∈ M0.

Remark 6 The interest of Theorem 5 is that it implies that the reduced
system on the center manifold is analytic, up to exponentially small terms.
This property is clearly still true after the polynomial new change of variables
which put the reduced system under normal form (the usual one). In con-
sidering the analytic part of the reduced vector field, this normal form may
be derived up to an optimal degree, as made in [7], since L0 is diagonaliz-
able. This may be helpful when dealing with exponentially small phenomena
associated with the original system (1).

Remark 7 This theorem is also true in the infinite dimensional case (see
Theorem 20 in subsection 4.2)

A last application of theorem 1, important in particular for engineering
systems, is when the two linear subsystems in E0 and E1 have both their
eigenvalues on the imaginary axis. More precisely in section 5, we prove

EllipticThm Theorem 8 (Elliptic vector fields) Assume that assumptions of Theorem 1
hold, and in addition that L1 has only imaginary eigenvalues. Then for any
small initial data u(0) chosen on the manifold M′

0 = {u = u0 +Φ(u0);u0 ∈
E0} the solution u(t) stays at a distance O(e

− C

δb ) to M′
0 for t ∈ [0, T ], with

T = O(δ−(b+1/ν)), where b = (1 + ντ)−1 and ν is the maximal index of
eigenvalues of L1.

Remark 9 We observe (see 39) that in going up to exponentially small
terms in Theorem 1, we win the exponential smallness of ||v1(t)|| for a long
range of time, without more precise assumption on L1. If we assume more
specific properties of the system, we may have a longer range of time for
the validity of this exponential smallness. First, if L1 is diagonalizable this
range of time is O(δ−[1+(1+τ)−1]).

Remark 10 Let assume in addition that (1) is a reversible system such
that L has only pairs of simple imaginary eigenvalues, satisfying the γ, τ -
homologically diophantine assumption defined in [7]: for every α ∈ N

m, |α| ≥
2

|〈α, λ〉 − λj | ≥
γ

|α|τ when 〈α, λ〉 − λj 6= 0,
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and 〈α, λ〉−λj = 0 only for the trivial cases 2λj +λj−λj = 0 (non resonance
assumption). In such a case, we can use the normal form theorem of [7]
which gives a normal form up to an exponentially small term, which improves
the final form of Theorem 1 since the coupling between the subsystems in E0

and in E1 only appears in exponentially small terms.Taking v1(0) = 0, it is
easy to show that ||v1(t)|| stays exponentially small now for an exponentially
long time (analogue to Arnold diffusion).

3 Proof of the main theorem

We first deduce corollary 4 from theorem 1 and then we prove this theorem.

Proof of Corollary 4. Let us define

ũ = (u, µ) ∈ R
m × R

q,

then the system reads
dũ

dt
= L̃ũ + R̃(ũ), (12) extendSyst

with
L̃ũ = (Lu, 0), R̃(ũ) = (R(u, µ), 0).

Then, it is clear that the system (12) satisfies all assumptions of Theorem
1. In particular, the operator L̃ is the direct sum of L̃0 and L̃1 defined by

L̃0ũ0 = (L0u0, 0), for ũ0 ∈ Ẽ0 = E0 × R
q,

L̃1ũ1 = (L1u1, 0), for ũ1 ∈ Ẽ1 = E1 × {0},

and the eigenvalues of L̃1 are those of L1, while the eigenvalues of L̃0 are
those of L0 with 0 still semi-simple, having an additional q - dimensional
eigenspace: (0, µ), µ ∈ R

q and the diophantine condition (4) is still satisfied.
Hence the Corollary is proved.

Proof of Theorem 1. In the proof below we use several algebraic prop-
erties which were proved in [7]. Performing the change of coordinates
u = u0 + u1 + Φ(u0), we check that (1) is equivalent to (6) close to the
origin if and only if

P0R(u0 + v1 + φ(u0)) = R(0)(u0, v1),

DΦ(u0).L0u0 − L1Φ(u0) = −DΦ(u0).R
(0)(u0, v1) − ρ(u0)

+P1R
(
u0 + u1 + Φ(u0)

)
− R(1)(u0, v1).

8



Then Setting v1 = 0 and using (7), we obtain the following basic identity

DΦ(u0)L0u0 − L1Φ(u0) = −DΦ(u0)P0R(u0 + Φ(u0))
+P1R(u0 + Φ(u0)) − ρ(u0).

(13) basicIdent

Let decompose the polynomial Φ into a sum of homogeneous polynomials
of increasing degrees

Φ(u0) =
∑

2≤k≤p

Φk[u
(k)
0 ]

with k - linear symmetric maps Φk:(E0)
k → E1. For convenience we denote

by Φ1(u0) ≡ u0 which takes its values in E0 (contrary to Φk for k ≥ 2,
which takes its values in E1). Then we have for 2 ≤ n ≤ p

DΦn[u
(n)
0 ]L0u0 − L1Φn[u

(n)
0 ] = Fn[u

(n)
0 ], (14) homologicEqu

with

Fn[u
(n)
0 ] =

∑

2≤q≤n
k1+···+kq=n, kj≥1

P1Rq[Φk1, · · · ,Φkq ] +

−
∑

2≤ℓ≤n−1, 2≤q≤n−ℓ+1
k1+···+kq=n−ℓ+1, kj≥1

DΦℓ[u
(ℓ)
0 ]P0Rq[Φk1, · · · ,Φkq ].

Equation (14) is of the form

AΦn = Fn

with the homological operator A defined on the vector space of polynomials
Φ : E0 → E1, by

AΦ = DΦ(u0)L0u0 − L1Φ(u0). (15) homologic

We then need to introduce the scalar product in the space H of polynomials
of a variable in E0, taking values in C

m (which could be in the complexified
space of the subspace E1 or E0) as done in [7].

Given two polynomials Φ and Φ′ we define their scalar product by

〈Φ,Φ′〉H :=
∑

1≤j≤n

〈Φj ,Φ
′
j〉

with Φ = (Φ1, · · · ,Φn), Φ′ = (Φ′
1, · · · ,Φ′

n), and where for a pair of poly-
nomials P,Q : E0 → C,

〈P,Q〉 = P (∂X)Q(X)|X=0,
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where by definition

P (X) = P (X).

Then the associated euclidian norm is defined by

|Φ|2 :=
√

〈Φ,Φ〉H.

It is clear that for any n ≥ 1, the linear operator A leaves invariant the
subspace Hn of homogeneous polynomials of degree n, and we have the
following Lemma proved in Appendix:

Eric’s Lemma Lemma 11 The operator A is invertible in the subspace Hn and there exists
a constant a, depending only on γ and L1, such that

|||A|−1
Hn

|||2 := sup
|Φ|2=1

|A|−1
Hn

Φ| ≤ anτ ′

,

where τ ′ = ντ, and ν is the maximal index of the eigenvalues of L1.

This lemma is proved in Appendix A.

Remark 12 If L1 is in Jordan form, the constant a depends only on γ and
ν. If L1 is diagonal then τ ′ = τ and a = 1/γ.

Moreover, defining the norm

φn := |Φ|2,n :=
1√
n!
|Φ|2, for Φ ∈ Hn,

we have the following lemma, proved in [7] (see Lemmas 2.10, 2.11):

Lemma 13
(i) For k1 + ... + kq = n

|Rq[Φk1, · · · ,Φkq ]|2,n ≤ c

ρq
φk1 · · · φkq ,

(ii) for 2 ≤ ℓ ≤ p, ℓ + k = n + 1, and any Nk ∈ Hk

|DΦℓ ·Nk|2,n ≤
√

ℓ2 + (m0 − 1)ℓ φℓ|Nk|2,k ≤ ℓ
√

m0 φℓ|Nk|2,k.

Then, the proof of Theorem 1 is performed in several steps giving re-
spectively estimates of φn, ‖∑Φ(u0)‖, and ρ0 gathered in the following
lemmas:
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Lemphin Lemma 14 There exists K > 0 depending only on c, c01, ρ,m0, a such that
for every n with 1 ≤ n ≤ p,

φn ≤ √
m0 Kn−1(n!)1+τ ′

. (16) estimPhi_na

where c01 := max
(
|||P0|||, |||P1|||

)
.

LemSigmaphiopt Lemma 15 Let us choose p such that

p = popt :=

[
1

(2δK)b

]
, b =

1

1 + τ ′ , (17) lowerBounda

where [·] denotes the integer part of a number. Then for ||u0|| ≤ δ we have
∥∥∥∥∥∥

∑

1≤k≤popt

Φk(u0)

∥∥∥∥∥∥
≤ 2δ

√
m0.

rhoopt Lemma 16 The remainder ρ satisfies

ρ(u0) = R1(u0) + R2(u0) + R3(u0) + R4(u0),

with

R1(u0) =
∑

p+1≤q

P1Rq





 ∑

1≤k≤p

Φk(u0)




(q)

 ,

R2(u0) = −
∑

2≤ℓ≤p, p+1≤q

DΦℓ[u
(ℓ)
0 ]P0Rq





 ∑

1≤k≤p

Φk(u0)




(q)

 ,

R3(u0) =
∑

2≤q≤p, 1≤kj≤p
k1+···+kq≥p+1

P1Rq[Φk1(u0), · · · ,Φkq(u0)],

R4(u0) = −
∑

2≤ℓ≤p, q≤p, 1≤kj≤p
k1+...kq≥p−l+2

DΦℓ[u
(ℓ)
0 ]P0Rq[Φk1(u0), · · · ,Φkq(u0)],

and for p = popt, it satisfies

sup
||u0||≤δ

||ρ(u0)|| ≤ Me
− w

δb , (18) Eqrhoa

with M,w > 0 depending only on τ,m0, c, ρ, L1.
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Proof of lemma 14. Estimate of φn. We obtain from (14)

φn ≤ acc01n
τ ′

{ ∑
2≤q≤n

k1+···+kq=n, kj≥1

1
ρq φk1 · · ·φkq

+
∑

2≤ℓ≤n−1, 2≤q≤n−ℓ+1
k1+···+kq=n−ℓ+1, kj≥1

ℓ
√

m0

ρq φℓφk1 · · ·φkq

}
.

(19) firstEstimate

Then, notice that by construction

φ1 =
√

m0.

For suppressing the factor nτ ′

in the inequality (19), we introduce the fol-
lowing sequence αn defined by

α1 = 1 and φn =
√

m0K
n−1
1 (n!)τ

′

αn, for n ≥ 1

where K1 will be chosen later. Using the following inequalities proved in
[7]-lemma 2.12,

k1! · · · + kq!

(n − 1)!
≤ 1 for 2 ≤ q ≤ n, k1 + · · · + kq = n,

and

ℓ!k1! · · · kq!

(n − 1)!
=

ℓ!k1! · · · kq!

(n − ℓ)!

(n − ℓ)!

(n − 1)!
≤ 1, for





2 ≤ ℓ ≤ n − 1,
2 ≤ q ≤ n − ℓ + 1,
k1 + · · · + kq = n − ℓ + 1,

αn ≤ acc01K1√
m0





∑

2≤q≤n
k1+···+kq=n, kj≥1

(√
m0

K1ρ

)q

αk1 · · ·αkq+

∑

2≤ℓ≤n−1, 2≤q≤n−ℓ+1
k1+···+kq=n−ℓ+1, kj≥1

m0

(√
m0

K1ρ

)q

ℓαℓαk1 · · ·αkq





,

and by choosing

K1 ≥ acc01m
3/2
0

ρ2
, (20) cond1
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we finally get

αn ≤
∑

2≤q≤n
k1+···+kq=n, kj≥1

(√
m0

K1ρ

)q−2

αk1 · · ·αkq + (21) inegAlpha_n

+
∑

2≤ℓ≤n−1, 2≤q≤n−ℓ+1
k1+···+kq=n−ℓ+1, kj≥1

(√
m0

K1ρ

)q−2

ℓαℓαk1 · · ·αkq .

Now, the idea is to use the majorizing sequence βn defined by

β1 = 1, βn = Θn−2(n − 2)! for n ≥ 2,

the number Θ being chosen later, large enough. It is clear that

α1 = 1 ≤ β1,

α2 ≤ α2
1 = 1 ≤ β2.

Assuming that αk ≤ βk for 1 ≤ k ≤ n− 1, we intend to prove that αn ≤ βn.
Indeed, by replacing αk by βk, 1 ≤ k ≤ n− 1, in the right hand side of (21)
we find that

αn ≤
∑

2≤q≤n

(√
m0

K1ρ

)q−2

Πq,n +
∑

2≤ℓ≤n−1, 2≤q≤n−ℓ+1

(√
m0

K1ρ

)q−2

ℓβℓΠq,n−ℓ+1,

with, for 2 ≤ q ≤ n

Πq,n :=
∑

k1+···+kq=n, kj≥1

βk1 · · · βkq .

It is shown in [7]-lemma 2.13 that

Π2,n ≤ 2
Θβn, for n ≥ 3,

Πq,n ≤ 2
Θq−2 βn, for 3 ≤ q ≤ n.

Hence

αn ≤


 2

Θ
+
∑

3≤q≤n

2

( √
m0

ΘK1ρ

)q−2

 βn +

+
2

Θ

∑

2≤ℓ≤n−1

ℓβℓβn−ℓ+1 +
∑

2≤ℓ≤n−1, 3≤q≤n−ℓ+1

2

( √
m0

ΘK1ρ

)q−2

ℓβℓβn−ℓ+1.

13



We choose now Θ and K1 such that

1

Θ
+

√
m0

ΘK1ρ −√
m0

≤ 1

4
, (22) cond2

then

αn ≤ 1

2


βn +

∑

2≤ℓ≤n−1

ℓβℓβn−ℓ+1


 .

Since it is shown in [7] (p.22) that

∑

2≤ℓ≤n−1

ℓ(ℓ − 2)!(n − ℓ − 1)!

(n − 2)!
≤ 5

2
for n ≥ 3,

we then obtain

αn ≤ 1

2

(
1 +

5

2Θ

)
βn.

Hence, it suffices to take

Θ ≥ 5

2
(23) cond3

for having αn ≤ βn, which finally proves that

φn ≤ √
m0K1(ΘK1)

n−2(n!)τ
′

(n − 2)!, n ≥ 2,

provided that conditions (20), (22), (23) on Θ and K1 are satisfied. We can
take for example

Θ = 8, K = 8K1 = max

{
9
√

m0

ρ
,
8acc01m

3/2
0

ρ2

}
. (24) Kdef

The first conclusion is that there exists K > 0 depending only on c, c01, ρ,m0, a
such that

φn ≤ √
m0K

n−1(n!)1+τ ′

for 1 ≤ n ≤ p. (25) estimPhi_n

Proof of Lemma 15. Estimate of
p∑

n=1
Φn.

14



First we have for ||u0|| ≤ δ and from Lemma 2.10 of [7]
∥∥∥∥∥∥

∑

1≤n≤p

Φn(u0)

∥∥∥∥∥∥
≤

∑

1≤n≤p

φnδn

≤
∑

1≤n≤p

√
m0

K
(δK)n(n!)1+τ ′

≤ δ
√

m0

∑

1≤n≤p

(δKp1+τ ′

)n−1.

Let us choose p such that

p =

[
1

(2δK)b

]
, b =

1

1 + τ ′ , (26) lowerBound

where [·] denotes the integer part of a number, then
∥∥∥∥∥∥

∑

1≤n≤p

Φn(u0)

∥∥∥∥∥∥
≤ 2δ

√
m0,

and for δ < ρ/(2
√

m0) we have ||u0 + Φ(u0)|| < ρ.

Proof of Lemma 16. Estimate of the remainder ρ(u0).

We estimate each term Rk separately.

Step 1. First we estimate R1(u0). We have for every δ < ρ/(4
√

m0), and p
satisfying (26)

||R1(u0)|| ≤
∑

q≥p+1
cc01

(
2δ

√
m0

ρ

)q
≤ cc01

(
2δ

√
m0

ρ

)p

≤ 2cc01

(
1
2

)p+1

≤ 2cc01

(
1
2

) 1

(2δK)b

≤ 2cc01e
− ln 2

(2δK)b .

(27) estimR_1

Step 2. For estimating R2(u0) we have for δ < ρ/(4
√

m0)

||R2(u0)|| ≤ cc01

∑

2≤ℓ≤p, q≥p+1

ℓφℓ
√

m0δ
ℓ−1

(
2δ
√

m0

ρ

)q

≤ cc01

∑

2≤ℓ≤p

ℓφℓ
√

m0δ
ℓ−1

(
2δ
√

m0

ρ

)p

.

15



Now, for p satisfying (26)
∑

2≤ℓ≤p

ℓφℓδ
ℓ−1 ≤

∑

2≤n≤p

√
m0(Kδ)n−1n(n!)1+τ ′

≤
∑

2≤n≤p

√
m0p(Kδp1+τ ′

)n−1

≤ √
m02Kδp2+τ ′ ≤ √

m0p ≤
√

m0

(2δK)b
.

Hence, for δ < δ1 = min{ρ/(4
√

m0),
1

2K(2e)1+τ ′ } an using that that for x ≥ 2,

ln x ≤ x ln 2
2 , we get that

||R2(u0)|| ≤ cc01m0

(2δK)b

(
2δ
√

m0

ρ

)p

≤ 2cc01m0

(2δK)b

(
1

2

)p+1

≤ 2cc01m0

(2Kδ)b
e
− ln 2

(2δK)b

≤ 2cc01m0e
− ln 2

2(2δK)b . (28) estimR_2

Step 3. We now estimate R3(u0) :

||R3(u0)|| ≤ cc01

∑

2≤q≤p, 1≤kj≤p
p+1≤k1+···+kq=n≤qp

(√
m0

Kρ

)q

(δK)n(k1!)
1+τ ′

...(kq !)
1+τ ′

and from (24) we have
√

m0

Kρ = r ≤ 1/9 and from (26) we have Kδ ≤ 1
2p1+τ ′

.

Hence,

||R3(u0)|| ≤ cc01

∑

2≤q≤p, 1≤kj≤p
p+1≤k1+···+kq=n≤qp

rq 1

2n
(
k1!

pk1
)1+τ ′

...(
kq!

pkq
)1+τ ′

≤ cc01

2p+1

∑

2≤q≤p

rq


 ∑

1≤j≤p

(
j!

pj

)1+τ ′




q

.

Moreover, we have

∑

1≤j≤p

(
j!

pj

)1+τ ′

≤ 1

p1+τ ′ +
∑

2≤j≤p

1

p1+τ ′ =
1

pτ ′ ,
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hence, since r
pτ ′

≤ r ≤ 1/9

||R3(u0)|| ≤ cc01

2p+1

∑

2≤q≤p

(
r

pτ ′

)q

≤ cc01

72 · 2p+1
≤ cc01

72
e
− ln 2

(2δK)b . (29) estimR_3

Step 4. Finally, for the estimate of R4(u0) we have by the same way

||R4(u0)|| ≤ cc01
m0p

1+τ ′

2p+1

∑

2≤ℓ≤p, q≤p, 1≤kj≤p
ℓ+k1+···+kq=n+1≥p+2

rqℓ(
ℓ!

pℓ
)1+τ ′

(
k1!

pk1
)1+τ ′

...(
kq!

pkq
)1+τ ′

≤ cc01
m0p

1+τ ′

2p+1

∑

2≤q≤p, 2≤ℓ≤p

rqℓ(
ℓ!

pℓ
)1+τ ′


 ∑

1≤j≤p

(
j!

pj

)1+τ ′




q

≤ cc01
m0p

1+τ ′

2p+1

∑

2≤q≤p

(
r

pτ ′

)q p

pτ ′

≤ cc01

72

m0p
2(1−τ ′)

2p+1

≤ cc01

72
m0p

2(1−τ ′)e
− ln 2

(2δK)b

≤ cc01m0

72
e
− ln 2

2(2δK)b , (30) estimR_4

provided that δ ≤ δ0 = min{δ1, δ2} where δ2 is small enough, such that

4(1 − τ ′) ln(2Kδ2)
−b ≤ (2Kδ2)

−b ln 2,

this condition being empty for τ ′ ≥ 1.

Now collecting estimates (27), (28), (29), (30), proves Theorem 1.

4 Analytic center manifolds up to Exponentially

small terms

4.1 Finite dimensional case. Proof of theorem 5

This subsection is entirely devoted to the proof of Theorem 5 which ensures
the existence of analytic center manifolds up to Exponentially small terms.

17



We notice that the diophantine condition (4) is automatically satisfied,
since

〈α, λ(0)〉 ∈ iR,

and
|〈α, λ(0)〉 − λ

(1)
j | ≥ γ

for all α ∈ N
m0\{0} and all eigenvalues λ

(1)
j of L1. Hence Theorem 1 applies

directly, ensuring that there exists a polynomial Φ : E0 → E1 such that the
change of variable in E1

u1 = v1 + Φ(u0)

transforms the system (1) into the following system in E0 × E1

dũ

dt
= F(ũ) + ρ̃(ũ), (31) Equtilde

where ũ = (u0, v1) ∈ E0 × E1 and

F(ũ) =

(
L0u0 + R(0)(u0, v1)

L1v1 + R(1)(u0, v1)

)
, ρ̃(ũ) =

(
0

ρ(u0)

)

with
sup

||u0||≤δ
||ρ(u0)|| ≤ Me−

w
δ .

For ρ̃ ≡ 0, the truncated system

dũ

dt
= F(ũ), (32) TruncatedSyst

admits the invariant manifold

M̃′
0 = {ũ = (u0, v1) ∈ E0 × E1/v1 = 0}

which appears to be an analytic center manifold (see [8], or [19] and refer-
ences therein) . In original coordinates this manifold reads

M′
0 = {u ∈ R

m/u = u0 + Φ(u0)}

which is analytic since Φ is polynomial.
Our aim is now to prove that for the full system (1), i.e. when ρ̃ 6≡ 0,

this manifold is close to any center manifold up to an exponentially small
term. For that purpose we see the full system in new coordinates (31) as a
perturbation of the truncated system (32) by the exponentially small term
ρ̃(ũ).
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We introduce three scalar parameters (C, ε, ν) ∈ [0, 1]3 and consider the
analytic vector field

dv̂

dt
= V(v̂, ε, C, ν) := Lv̂ +

1

ε
R(εv̂) +

νe
C
ε

ε
ρ̃(εv̂). (33) RescaledSyst

For ν = 0, (33) admits an analytic center manifold M̃′
0 obtained from M′

0

by the scaling ũ = εv̂.
Since for every (C, ε, ν) ∈ [0, 1]3 and every v̂ ∈ E0 ×E1 satisfying ‖v̂‖ ≤

δ0 = w
2 ,

ν
e

C
ε

ε
||ρ̃(εv̂)‖ ≤ ν

ε
e

C−w/δ0
ε ≤ ν

ε
e−

1
ε ≤ mν < ∞

where m := sup
x≥0

(xe−x), we know (see [19]) that there is a family of center

manifolds Mε,ν for ||v̂|| + ε + |ν| + C ≤ r with r < 1 which holds for

0 ≤ C ≤ r

2
and ||v̂|| + ε + |ν| ≤ r

2
.

Since we can choose C∗ < min
(

r
2 , 4w

r

)
such that for every ν ∈ [0, r/4] and

every v̂ ∈ E0 × E1 and ε ∈]0, 1] satisfying ‖v̂‖ + ε ≤ r
4 ,

e
C∗

ε

ε
||ρ̃(εv̂)‖ ≤ 1

ε
e

C∗−4w/r
ε ≤ m

4w/r−C∗
< ∞

the value ν = e−
C∗

ε is eligible for a center manifold which corresponds to the
original system rescaled. The regularity results on center manifolds allow to
claim that the graph satisfies

u = u0 + Φ(u0) + Ψ(u0),

with constants M and C ′ such that

||Ψ(u0)|| ≤ Me−
C′

δ , for ||u0|| ≤ δ.

Notice that we loose analyticity only in the term Ψ which is exponentially
small.

4.2 Infinite dimensional case
SubsecInfinitedim

The above result extends to the infinite dimensional case in the following
way which needs an adapted assumption to replace Lemma 11. Indeed, still

19



in R
m, and assuming that L0 is diagonal in E0 where the norm is such that

eL0t is an isometry, we can solve the homological equation (14) in Hn in
setting

v(t) = Φn[(eL0tu0)
(n)] ∈ Hn,

then
dv(t)

dt
= L1v(t) + Fn[(eL0tu0)

(n)], (34) diffEquPhi_n

and it is easy to see that the unique solution which is allowed to possibly
grow as eη|t| as t → ±∞, with η ∈ [0, γ[, is given by

v(t) =

∫ t

−∞
eL

−

1 (t−s)P−Fn[(eL0su0)
(n)]ds−

∫ ∞

t
eL

+
1 (t−s)P+Fn[(eL0su0)

(n)]ds,

(35) GreenKernel

where the linear operators P± are the projections commuting with L1, cor-
responding to the separation of its spectrum into eigenvalues with positive or
negative real parts, and L±

1 = P±L1. Moreover v(t) is smooth and bounded
for t ∈ R, and t = 0 gives

Φn[(u0)
(n)] =

∫ 0

−∞
e−L

−

1 sP−Fn[(eL0su0)
(n)]ds−

∫ ∞

0
e−L

+
1 sP+Fn[(eL0su0)

(n)]ds,

(36) Phi_n

and there is a constant a depending only on the bounds of e−L
−

1 s for s < 0
and of e−L

+
1 s for s > 0 such that

φn ≤ a|Fn|2,n.

Formula (35) which is valid in the finite dimensional space E1 leads to a basic
assumption for the center manifold theorem as formulated in [21], which is
verified in many cases of physical interest (see examples in [21]).

Let X , Y, Z be (real or complex) Banach spaces such that

Y →֒ Z →֒ X ,

with continuous embeddings. We consider a differential equation in X , of
the form

du

dt
= Lu + R(u), (37) systdim

in which we assume that the following holds.

h:1 Hypothesis 17 We assume that L and R in (37) have the following prop-
erties:
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(a) L ∈ L(Y,X );

(b) There exists ρ > 0 such that R : Y → Z is analytic in the ball ||u||Y ≤
ρ and satisfies (2) and (3).

Besides the Hypothesis 17, we make two further assumptions on the
linear operator L, which are essential for the center manifold theorem.

h:2 Hypothesis 18 (Spectral decomposition) Consider the spectrum σ of
L, and write

σ = σ+ ∪ σ0 ∪ σ−

in which

σ+ = {λ ∈ σ ; Reλ > 0}, σ0 = {λ ∈ σ ; Reλ = 0}, σ− = {λ ∈ σ ; Reλ < 0}.

We assume that

(a) there exists a positive constant γ > 0 such that

inf
λ∈σ+

(Reλ) > γ, sup
λ∈σ−

(Reλ) < −γ;

(b) the set σ0 consists of a finite number of eigenvalues with finite algebraic
multiplicities and geometric multiplicity one.

This decomposition of the spectrum allows to define a projection P0 ∈
L(X , E0) on the finite-dimensional invariant ”central” space E0, which com-
mutes with L. The complementary projection Ph = I −P0 is also a projec-
tion commuting with L, bounded in Xh = PhX as well as in Yh = PhY and
Zh = PhZ. The restriction of L to Yh is denoted by Lh.

h:3 Hypothesis 19 (Linear equation) For any η ∈ [0, γ] and any

f ∈ Cη(R,Zh) =

{
v ∈ C0(R,Zh); ||v||Cη = sup

t∈R

(
e−η|t|||v(t)||Zh

)
< ∞

}
,

the linear problem
duh

dt
= Lhuh + f(t),

has a unique solution uh = Khf ∈ Cη(R,Yh). Furthermore, the linear map
Kh belongs to L(Cη(R,Zh), Cη(R,Yh)), and there exists a continuous map
C : [0, γ] → R such that

‖Kh‖L(Cη(R,Zh),Cη(R,Yh)) ≤ C(η).
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Then, we have the following theorem, which extends Theorem 5 to infi-
nite dimensional cases:

center manifold Theorem 20 (Center manifold analytic up to exp. small term)
Assume that the Hypotheses 17, 18, and 19 hold. Then for any k > 2,

there exists a polynomial Φ : E0 → Eh of degree O(1/δ), with Φ(0) = 0,
DΦ(0) = 0, a neighborhood O of 0 in Y, and a map Ψ ∈ Ck(E0,Yh) which

is O(e−
C
δ ) for ||u0||E0 ≤ δ and a certain constant C > 0, such that the

manifold
M0 = {u0 + Φ(u0) + Ψ(u0) ; u0 ∈ E0} ⊂ Y (38) e:m01

has the following properties.

(a) M0 is locally invariant, i.e., if u is a solution of (37) satisfying u(0) ∈
M0∩O and u(t) ∈ O for all t ∈ [0, T ], then u(t) ∈ M0 for all t ∈ [0, T ].

(b) M0 contains the set of bounded solutions of (37) staying in O for all
t ∈ R, i.e., if u is a solution of (37) satisfying u(t) ∈ O for all t ∈ R,
then u(0) ∈ M0.

Proof. We use the result proved in [21], complemented by the proof of
Theorem 5, for which we need to use Hypothesis 19 to solve the homological
equation (14), as in (36), by

Φn[u
(n)
0 ] = KhFn[

(
eL0·u0

)(n)
]|t=0,

and to obtain the basic estimate

φn ≤ a|Fn|2,n.

5 Case of Elliptic vector fields
SecElliptic

Consider now the system (1) in R
n when both spectra of L0 and L1 lie

on the imaginary axis. This is the natural situation for nonlinear vibrating
systems, typically with a large number of coupled nonlinear oscillators. This
section is devoted to the proof of theorem 8.

Theorem 1 applies and it results that the manifold M′
0 defined by

u = u0 + Φ(u0),
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which has the dimension of E0 and is tangent to E0 in 0, is ”nearly” invari-
ant. More precisely, assume that the initial condition at t = 0 is such that
v1|t=0 = 0, i.e. u|t=0 ∈ M′

0. Then consider the second component of the
vector field (6). If the remainder ρ(u0) would be identically 0, the manifold
M′

0 would be an invariant manifold, since v1(t) = 0 would be the unique
solution of the initial value problem. Now assume v1(0) = 0 and that u0(t)
satisfies for t ∈ [0, T ]

||u0(t)|| ≤ δ.

Then (6) and the estimate for R(1) gives as soon as ||v1(t)|| ≤ δ for t ∈ [0, T ]

||v1(t)|| ≤ cδ

∫ t

0
||eL1(t−s)||||v1(s)||ds + Mte

− w

δb .

For any ξ > 0, there exists C = β(ν)ξ−(ν−1) where ν is the maximal index
of eigenvalues of L1, such that for any t ∈ R

||eL1t|| ≤ Ceξ|t|,

then by Gronwall Lemma we get

||v1(t)|| ≤ Me
− w

δb

{
t +

cCδ

(cCδ + ξ)2
e(cCδ+ξ)t

}
,

and in choosing ξ = (cβδ)1/ν

||v1(t)|| ≤ Me
− w

δb

{
t +

1

4(cβδ)1/ν
e2t(cβδ)1/ν

}
(39) first time estimate

which shows that ||v1(t)|| stays smaller than M1e
− w

2δb for t = O(δ−[b+1/ν]).
This means that the trajectory stays exponentially close to the manifold
M′

0 for a very long time of order O(δ−[b+1/ν]) and it achieves the proof of
theorem 8.

A Norm of the inverse of the homological operator
AppendixA

LemAcal Lemma 21 Let L be a linear operator in C
m and assume that the linear

operator L is the direct sum of two linear operators L0 on E0 (dim m0),
and L1 on E1 (dim m1), such that L0 is diagonalizable with eigenvalues

λ
(0)
1 , · · · , λ

(0)
m0 and that there exist constants 0 < γ ≤ 1, τ ≥ 0 such that

Λα,j := 〈α, λ(0)〉 − λ
(1)
j satisfies

|Λα,j| ≥
γ

|α|τ (40) App_diophCond
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for any α ∈ N
m0\{0}, and any eigenvalue λ

(1)
j of L1.

Let (ek)1≤k≤m be the canonical basis of C
m. We assume that (ek)1≤k≤m0

is a basis of eigenvectors of L0 :

L0ek = λ
(0)
j ek.

Moreover we also assume that fj = em0+j with 1 ≤ j ≤ m1, is a basis of
generalized eigenvectors in which L1 is under Jordan complex normal form,
i.e.

L1fj = λ
(1)
j fj + δj−1fj−1

where δ0 = 0 and where δj = 0 if λ
(1)
j 6= λ

(1)
j−1 and δj = 0 or 1 otherwise.

Let H be the set of all polynomials from E0 to E1 and let Hn be the
subset of homogeneous polynomials of degree n. Finally let us denote by
A : H → H the homological operator defined by

(AΦ)(u0) = DΦ(u0)L0u0 − L1Φ(u0).

Then,

LemAcala (a) A maps Hn into Hn and the spectrum of its restriction to Hn, A|
Hn

,
is given by

σ(A|
Hn

) := {Λα,j = 〈α, λ(0)〉 − λ
(1)
j / α ∈ N

m0 , |α| = n, 1 ≤ j ≤ m1}.

LemAcalb (b) A|
Hn

is invertible in the subspace Hn and

|||A|−1
Hn

|||2 := sup
|Φ|2=1

|A|−1
Hn

Φ|2 ≤ ν γ−ν nτν .

Proof of (a). Let us denote by Pα,j with α ∈ N
m0 , |α| = n and 1 ≤ j ≤ m1

be the basis of Hn given by

Pα,j(u0) = (u0,1)
α1 · · · (u0,m0)

αm0 fj

where u0 =
m0∑
k=1

u0,k ek. Then we check that

A|
Hn

Pα,j = Λα,j Pα,j − δj−1Pα,j−1. (41)

Let us order this basis by lexicographical order, i.e. Pα,j < Pβ,ℓ if the first
non zero integer β1 − α1, · · · , βm0 − αm0 , ℓ − j is positive. Within this
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order, the matrix MA|
Hn

of A|
Hn

in the basis Pα,j is upper triangular. More

precisely, it is the direct sum of m1 × m1 matrices Mα,

MA|
Hn

=
⊕

α∈Nm0 ,|α|=m0

Mα, Mα =




Λα,1 δ1 0 0

0
. . .

. . . 0

0 0
. . . δm1

0 0 0 Λα,m1




.

(42) EqMA

Hence the spectrum of A|
Hn

is given by

σ(A|
Hn

) := {Λα,j = 〈α, λ(0)〉 − λ
(1)
j / α ∈ N

m0 , |α| = n, 1 ≤ j ≤ m1}.

Proof of (b). Since by hypothesis, for every α ∈ N
m0 and every 1 ≤ j ≤ m1,

|Λα,j | ≥ γ
|α|τ > 0, A|

Hn
is invertible and (42) ensures that

MA|−1
Hn

= M−1
A|

Hn

=
⊕

α∈Nm0 ,|α|=m0

M−1
α .

Moreover Mα is block diagonal

Mα =

q⊕

r=1

Bjr,pr with Bj,p =




Λα,j 1 0 0

0
. . .

. . . 0

0 0
. . . 1

0 0 0 Λα,j+p




where 1 ≤ jr ≤ m1 and 0 ≤ pr ≤ ν where ν is the maximal index of the
eigenvalues of L1. For a polynomial Φ ∈ Hn, we can write

Φ =
∑

|α|=n

m1∑

j=1

Φα,j Pα,j =
∑

|α|=n

q∑

r=1

jr+pr∑

j=jr

Φα,j Pα,j

Then for Ψ ∈ Hn, AΦ = Ψ if and only if, for every α ∈ N
m0 with |α| = n

and every 1 ≤ r ≤ q




Φα,jr+pr = Λ−1
α,jr+pr

Ψα,jr+pr

Φα,jr+pr−1 = Λ−1
α,jr+pr−1Ψα,jr+pr−1 − (Λα,jr+prΛα,jr+pr−1)

−1 Ψα,jr+pr

...

Φα,jr = Λ−1
α,jr

Ψα,jr+pr−1 − (Λα,jrΛα,jr+1)
−1 Ψα,jr+1

+ · · · + (−1)pr−1 (Λα,jr · · ·Λα,jr+pr)
−1 Ψα,jr+pr
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Then observe that for every α ∈ N
m0 with |α| = n,

max
1≤r≤q

jr≤j≤ℓ≤jr+pr

(Λα,j · · ·Λα,ℓ)
−1 ≤ γ−ν nντ .

Thus, for every α ∈ N
m0 with |α| = n, every 1 ≤ r ≤ q and every jr ≤ j ≤

jr + pr,
|Φα,j | ≤ γ−νnτν(|Ψjr | + · · · + |Ψjr+pr |.

Hence, since 〈Pα,j , Pβ,ℓ〉H = 0 for (j, α) 6= (ℓ, β) and since |Pj,α|2 = |Pℓ,α|2 =
α!, we have

|Φ|22 = |A−1Ψ|22

=
∑

|α|=n

q∑
r=1

jr+pr∑
j=jr

|Φα,j |2 |Pα,j|22

≤ (γ−ν nντ )2
∑

|α|=n

q∑
r=1

jr+pr∑
j=jr

(
jr+pr∑
ℓ=jr

|Ψα,ℓ|
)2

|Pα,j |22

≤ ν(γ−ν nντ )2
∑

|α|=n

q∑
r=1

jr+pr∑
j=jr

jr+pr∑
ℓ=jr

|Ψα,ℓ|2 |Pα,j|22

≤ ν2(γ−ν nντ )2
∑

|α|=n

q∑
r=1

jr+pr∑
ℓ=jr

|Ψα,ℓ|2 |Pα,ℓ|22

= (νγ−ν nντ )2|Ψ|22
Hence, |A−1Ψ|2 ≤ νγ−ν nντ |Ψ|2.
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