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Abstract 

Permanent capillary gravity waves on the free surface of a two dimen- 
sional inviscid fluid of infinite depth are investigated. An application of the 
hodograph transform converts the free boundary-value problem into a 
boundary-value problem for the Cauchy-Riemann equations in the lower 
halfplane with nonlinear differential boundary conditions. This can be con- 
verted to an integro-differential equation with symbol - k  2 + 4{k[ - 4(1 +/~), 
where # is a bifurcation parameter. A normal-form analysis is presented 
which shows that the boundary-value problem can be reduced to an inte- 
grable system of ordinary diflerential equations plus a remainder term con- 
taining nonlocal terms of higher order for I/~1 small. This normal form system 
has been studied thoroughly by several authors (Iooss & KmCHG~SSN-ER [8], 
IOOSS & PI'?ROLrEME [10], DIAS & [OOSS [5]). It admits a pair of solitary-wave 
solutions which are reversible in the sense of K~RCnGASSN~R [11]. By ap- 
plying a method introduced in [11], it is shown that this pair of reversible 
solitary waves persists for the boundary-value problem, and that the decay at 
infinity of these solitary waves is at least like 1/[x]. 

1. Statement of the problem 

One of the open problems in the area of two-dimensional water-wave 
problems is the question of existence of steady capillary gravity waves of 
solitary type on deep water. It was conjectured by LONGUET-HIc~mS [12] 
that such waves indeed exist. Steady capillary gravity solitary waves were 
calculated numerically by the same author in [13]. He observed that these 
waves do not decay exponentially but only quadratically with the inverse of 
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the distance from the origin in a moving frame of reference. A boundary- 
integral-equation technique was used by VANDER-BRoECK & DIAS [17] to 
compute both free and forced capillary gravity waves numerically. 

There are also numerous papers dealing with solitary waves in a two-fluid 
system where the lower layer is infinitely deep. A model equation for per- 
manent waves in a system of stratified fluids when capillarity is negligible was 
derived by BENJAMIN [3]. The corresponding time-dependent equation was 
derived later by ONO [15]. This model equation, which is known as the 
Benjamin-Ono equation in the literature, admits an explicit solitary-wave 
solution decaying algebraically. 

The full Euter equations for a two-fluid system, with one infinite layer, 
were considered by AMICK [1] and SUN [161. They independently proved, by a 
fixed-point technique, the existence of a solitary wave, near a solitary solu- 
tion of the Benjamin-Ono equation. Recently, BENJAMIN [4] proposed an 
approximate model equation for the interface problem of a two-fluid system, 
the lower being of infinite depth, with the interface being subject to cap- 
illarity. The linear singularity in this problem is the same as the one we are 
treating below, but a mathematical proof of the existence of solitary waves 
has still to be given. 

The existence of solitary capillary gravity waves on the free surface of a 
fluid of large but finite depth (i.e., for small Bond number and Froude 
number less than 1) was proved by Iooss & KIRCHGASSNER [8]. Their analysis 
was extended by DIAS & Iooss [5], who also considered the limit from finite 
depth to infinite depth. 

The subject of the present work is to provide a rigorous existence proof 
for solitary capillary gravity waves on deep water. 

The investigation is confined to waves of permanent form moving with 
constant velocity c from the right to the left on the free surface of an inviscid, 
incompressible fluid of uniform density p = P0- 

In a moving fi'ame of reference with coordinates 

(4, = ( x  + ct, Y), < < 

where Z(~) is the free surface, the flow is steady and the velocity field for the 
undisturbed fluid is the uniform flow (c,0). We consider flows which are close 
to this uniform flow and denote the perturbation by (cU, cV) so that U and 
V are dimensionless quantities, i.e., 

. ( t , x ,  r )  = cC7( , - c,  v ( t , x ,  v )  = 

From the equation of continuity and the assumption that the flow is irro- 
tational it follows that the flow has a potential ~b. The potential q~ and the 
stream function 0 are given by 

(U, V) = (q~e, <ke) = (~P~,,-O~). (1.1) 

Bernoulli's equation ensures that 
IpOC2(U2 -I- 1/'2) -t- p + pogtl = const, (1.2) 
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where p is the pressure and g stands for the acceleration of gravity. At large 
depth It/I >> 1, the pressure p is proportional to pog~l. 

The free surface t / =  Z(~) is a streamline corresponding to tp = 0, say; 
therefore, it satisfies 

~:z~ - v = 0, t / =  z(~), - o o  < ~ < ~o. (1.3) 

On the free surface the jump in the pressure is proportional to the curvature 

p(~) = - r  Z~(~) 
(1 + Ze2(~)) 3/2' 

where the factor of proportionality is the constant surface tension T. The 
problem is studied in a hodograph form (cf. [2]) where the coordinates (4), ~) 
are used to map the unknown domain 

{(¢, 7) s ~ 2 :  _ ~  < ~ < z ( ~ ) , - ~  < ~ < ~ }  

into the lower half plane. We set ~ = ¢ + it/, introduce the analytic complex 
function w({) = qS(~) + i0(~) and define two real functions c~ and fl of the 
complex variable w by 

w'(~) = U(~) - iV (~) = e/~(w(-0)-i~(w(-0). 

Thus, the magnitude of the velocity is given by e ~, and e is the angle between 
the velocity and the horizontal line measured in the counterclockwise di- 
rection. The independent variable ~ is replaced by w, so that the new domain 
for w is the lower half plane. As is shown in [2], the equations in the trans- 
formed variables become 

c2 po 
~4~ + ~4~fl~ -- T f l ~  e/~ - gP°e-2~sin~T = 0, ~ = 0, 

~ = p o ,  / ~ = - ~ ,  0 < 0 .  

In order to make all quantities dimensionless, we scale the independent 
variables by introducing a new unit of length: 

4T 
(4,, O) = (be, 0 ) ,  l = d p o  

A further condition at t / =  - c o  has to be added to the boundary-value pro- 
blem. In order to obtain solutions with physical relevance, we require that 
both e and fi vanish at infinite depth. The equations governing the problem are 

~ + a, fl~ - 4fl~e ~ - 4(1 + #)e -2/~ sin ~ = 0, y = 0 
ee l=f ly ,  f i , = - ~ y ,  y < 0 ,  (1.4) 

~ , f i ~ 0 ,  y--~--o% 

where the dimensionless parameter /~ is given by # = 4 g T  4 - 1 ~ 0. For- 
thefra  tl n o m l d  P°C really, c "o c ' c" es with the product b2 of the Bond number and the 

inverse of the square of the Froude number, 
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T =g_hh 
b - pohc2 , 2 c2. 

These two parameters are defined for a fluid of finite depth h. It was shown in 
[8] that, in the limit h --+ oc, the product b2 approaches the constant value ¼ 
along a certain branch in the (b,2) bifurcation diagram where a 1:1 res- 
onance bifurcation occurs. The assumption that ]#t << 1 agrees with the 
range of parameter values one obtains in that limit. We remark that the first 
equation in (1.4) represents the differentiated form of 

0 
sxe/~ - 2e 2/~ - 4(1 + #) f (e-~ coss  - 1)dy = const. 

- - O O  

Differentiating this equation with respect to x, one obtains the first equation 
of (1.4). The trivial solution (s, t )  = (0, const) is ruled out by the decay 
condition at y = - ec .  

This equation can be viewed as an integro-differential equation in x with 
the trace of s on y = 0 as the unknown function. Since s + i t  is an analytic 
function in the lower complex half plane, the trace of fi on y = 0 is the 
Hilbert transform of the trace of c~ on y = 0. For the proof of the last 
statement, we consider the linear boundary value problem 

sx = &,  Px = - sy ,  (x, y) ~ ~¢ × ( -oo,  0), 
(1.5) l imc~(x,y)=s°(x),  c~,fl--+O, y - -+-oo ,  ym 

where the trace s ° of s is prescribed. If  s ° belongs to L2 (IR), for example, then 
the solution of (15) can be found by applying the Fourier transform, solving 
the transformed system and applying the inverse Fourier transform. One 
finds that c~ and fi are given by convolution integrals: 

OO 

1 / y oe°(~) d~, ~(x, y) = ~ y2 + (x - ~)2 
-o~ (1.6) 

O 0  

1 f x -  ~ s°(~) d~. fl(X, y) = ~ y2 + (72  ¢)2 
- - O O  

The first equation represents Poisson's formula in the half plane. Taking the 
limit y g 0 in the second equation we obtain 

OO 

1 f s°(¢) dg, fl(x, 0) = ( i f  s(., 0))(x) = 7p.v. j ~ (1.7) 
- - 0 0  

where J f  denotes the Hilbert transform. The Fourier transform of 
t0 = fl(., 0) is given by 

fi°(k) = i sign(k)f°(k), (1.8) 
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which shows that the linearization of  (1.4) is equivalent to an integro-dif- 
ferential equation with symbol - k  2 + 41k ] - 4(1 + #). Replacing fi(x, 0) by 
Y~e(x, 0), we obtain the integro-differential equation 

O~xx+O~xfl~-4fi~e~-4(l +#)e-2~sinct=O, fl=Jfct.  (1.9) 

Since the zeros of the symbol are 2 :t: 2~/-'-fi and - 2  :tz 2x/~fi, a 1:1 resonance 
bifurcation takes place at # = 0. 

In the next section the boundary value problem (1.4) will be put into a 
form which makes it amenable to the normal form algorithm. 

2. Preparatory analysis 

We treat the problem in the formulation (1.4). In view of the normal-form 
algorithm to be applied, it is convenient to formulate the boundary-value 
problem as a dynamical system in a Banach space. The horizontal variable x 
plays the role of the evolutionary variable. We define the vector of unknowns 

t t  = U(X) = (o~O(x), O:~ (x), C~O(X, .), O:l (X, .), flo(X, .), fll (X, .)) t, 
where the following identifications are made 

~°(x) = ~(x,o),  ~ = ~x(x,o), ~o(~,-) = ~(~,.), ~l(x, . )  = ~x(~,.), 
and similarly for 8. Then we can write (1.4) as a differential equation in 
X = tI~ × I~ × [LI(--(N3~ 0)] 4 o f  the form 

du(x )  = Lu(x) + N ( # ;  u(x)), x E (2.1) IR 

A solution u : IR ~ D(L) is a mapping from IR into the domain of the 
linear operator L. More precisely we require u E CI(IR, X)N C°(IR, D(L)). 
The derivative in (2.1) is the Fr6chet derivative. The linear operator 
L : D(L) --~ X and the nonlinear mapping N : IR x D(L) --~ X are defined as 
follows 

D(L) = {u = ( ~ 0 , ~ l , ~ 0 , ~ l , f l 0 , f i I )  t E (]~2 X [ w l ' l ( - o o , 0 ) ] 4  : 

¢0 = a01y=0, ¢1 = cq ly=0}, (2.2) / ( 0 / 
4fi I ~ 4~ ° . 0 o 

L / e O  = 0 (2.3) ~1 ] p,, , S ( ~ ;  . ) =  0 " 

0 

The prime ' stands for the derivative with respect to y, the superscript 0 
means evaluation on the upper boundary y = 0. The nonlinear function 
F(~;~0 0 0 el, rio, fil °) is given by 
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F(#; C¢o, ~1,/70, ill) = -~1/71 - 4/71 + 4/71 e/~° - 4C¢o 
+ 4e -2& sin C¢o + 4#e -2~° sin e¢o 

: o(1(~;~0,=1,Bo,/7,)12) as (#;~0,~I,#0, Pl) --+ O. 

We shall construct a "normal form" of the system (2.1), which is determined 
by the spectrum of the linear operator L and symmetry properties. One of the 
notable features of equation (2.1) is its reversibility with respect to the iso- 
metry 

R :  (~1,=1°,~o,=,,/70,/71)' ~ (-=/,c~°,-c, .0,cq,/ /0,-Pl) ' .  (2.4) 

Let u(x) be a solution of (2.1); then uR(x) = Ru(-x) is also a solution, since 
both L and N anticommute with R. 

Now we are going to study the spectrum of the linear operator L. First set 
u(x) = u0e i~ and introduce this into the linearized equation. We obtain the 
relation - k  2 + 41k] - 4 = 0, i.e., there exist two eigenvalues ±2i of L, which 
can be shown to be double. The entire real line constitutes the essential 
spectrum of L. In particular, the closure of the range of (L - 2), 2 E IR, has 
codimension two, while the kernel is zero. The spectrum at 2 = 0 is reflected 
by the nonsmoothness of the symbol which contains a term [k]. The geo- 
metric multiplicity of the two eigenvalues is 1 and there exists a Jordan chain 
of length 2: 

(L T 2i) ~pO = 0, (L T 2i) q~] q~o, (2.5) ± ~  ± 

y 

/ [ o 
Tie2Y i -Y  e2y 
2e 2y | =: ~°°'-(Y) Y ~ Ti( l+2y)e 2y 
e2Y / qziY e2y 

±2ie 2y ] (1 + 2y)e 2y 

=: q~ (y). (2.6) 

The eigenvectors and generalized eigenvectors of the formal adjoint L* of L 
will be shown to exist. They are needed in the normal-lbrm algorithm. L* is 
defined by 

D(L*) := {u = (~O,~l,o'~o, Oq,/7o, fll)tC I]~ 2 )< [ w l ' l ( - o o , O ) ] 4  : 
eOly=O = O, et ly=0 = - < i ,  }, (2.7) / (4 1 

~1 ~o /70 
L* ~o yo (2.8) 

--~0 
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The normalized eigenfunctions of L* corresponding to the eigenvalues i 2 i  
are 

(L* + 2i)~p~ = O, (L* + 2i)~- = ~p[, (2.9) 

±i 

0 =: 0~:(Y)' Y ~ - 4  e 2y =: 0~:(y). (2.10) Y~+ T4ie2Y0 / ~)' J 

4e 2y \ q=4iye 2y ] 

The normalization implies the biorthogonality conditions 

(~±,~p~:) = ~ ,  (~±,@ff) = 0, (2.11) 

where the scalar product is the one for q;2 x [L2(-ec, 0)] 4, and where these 
quantities are well defined due to the exponential decay of eigenfunctions as 
y --~ -oc .  

An element u E X can be decomposed into a "central" component u0 
lying in the sub-space X0 spanned by the generalized eigenvectors q~o and q~l 
and a "hyperbolic" component ul lying in the complementary subspace X1. 
The components of u can be calculated by using the generalized eigenvectors 
of the adjoint operator as follows: 

,,o : e o , , :  ~ , o  + bq,~+ + ~q,o + ~q¢ , 

= (u,q,;) ,  b = (~ ,07 . ) ,  
l l  1 = ( I  - -  Po) u = u - uo. 

The central component u0 is identified with the complex vector 
v = (a, b, d, ~)t as given above. We write w = P~u = ( I  - Po)u  for the hy- 
perbolic component. 

According to the decomposition of u, (2.1) splits into a system of coupled 
differential equations in 112 2 and XI. The projected system is given by 

~ ( x )  = t0~(x) + N°(~; ~(~), ~(x)), 

L 0 = 

with 

d~(x)  = tl,v(x) + N I (~; v(~), ~(~)) 

2i 0 
0 -2 i  
0 0 i 

(2.12) 

NO(l~;v,w) = ( (N(#;u°(v) + w)'@°) ) 
(X(~,; u0(v) + ~), 01) ' 

X ~(~; ~, ~) = e~N(~; , ,o (v)  + w). 
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3. Application of a normal-form algorithm 

We are adapting a normal-form algorithm which was developed by 
ELPHICK et al. [6]. 

For the problem of capillary gravity waves on the free surface of a fluid of 
finite depth h, a normal form in the 1:1 resonance case was calculated by DIAs 
& Iooss [5] and the limit h --+ ~ was considered. In the mathematics, there 
are substantial differences between the "finite-depth" and the "infinite-depth" 
problems. In the case of finite depth there is available a center-manifold 
reduction theorem which guarantees that all small bounded solutions lie on a 
center manifold over the linear subspace spanned by the eigenelements and 
generalized eigenelements corresponding to the eigenvalues with zero real 
part. In the case of a 1:1 resonance bifurcation, center-manifold theory en- 
sures that all small bounded solutions can be written in the form 

u(x) = A(x)p~ + B(x)~p + + A(x)q~ o + B(x)cp~ 
+ q~(p;A(x), B(x),A(x),B(x)). 

A normal form corresponding to a 1:1 resonance bifurcation problem with 
reversibility is given in the book of Iooss & AOELMEYJ;~R [7, pp. 58--59]. The 
normal form is 

Ax = 2M + B + iAP(p;AA, ~(AB - AB)), 
Bx = 2iB + iBP(#;AA,~(AB -AB) )  +AQ(#;AL~(AB - d B )  (3.1) 

with real polynomials P and Q. In the finite-depth problem, the full 
boundary-value problem is, by center-manifold theory, locally equivalent to 
a system of ordinary differential equations which consists of the normal-form 
system (3.1) plus higher-order perturbation terms in (#, A, B, A,B). 

In the present situation of a fluid of infinite depth, a center-manifold 
reduction is not available because of lack of gap in the spectrum of LI near 
the imaginary axis. However, normal-form theory is applicable to (2.12) with 
some modifications and restrictions which are due to the non-invertibility of 
the operator L1. System (2.12) will be transformed into normal form by 
introducing new coordinates 

V =  (A,B,A,B) t E ¢4, W =  (~0, ~l, 00, 01, 7:0, Tl) E D(L1).  (3.2) 

The central equation of (2.12) can be put into normal form with a remainder 
term depending on (g, V, W). For the hyperbolic equation of (2.12), it turns 
out to be useful to remove certain second-order terms only.A 

Theorem 1. There exist polynomials 
~0 : ]R x ([~4 ---4 C 4, ~1 : ([~4 __4 D(L1) 

respectively of degrees 3 and 2 with respect to V such that, by the change of 
variables 



Capillary Gravity Waves 9 

v =  V+~b°(#;V), w = W + ~ I ( v ) ,  (3.3) 

system (2.12) is transformed into 

£ v(x) = L0v(x) + ~(~; v(~)) + R°(~; v(~), w(~)) 
dx (3.4) 

£ w(x) = t l  w(~) + n(v(x))  + R 1 (~; v(x), w(~)) 
dx 

where R ° C C 4,R t E X1, 

RJ(/u; V, W) = tO(([/~[1 V[ t-] + t#! e + IV[3-J)tv [ 

+ (I vl + 1~1 +11WFI~(L/)II Wll~/~t) 
as t~t +lVl + II WIiDIL) --+ O. Moreover, H is a quadratic polynomial with 

H(A,O,A,O) = 0. (3.5) 

The truncated equation for the central part 
d v(~) = ~0 v(~) + a(~; v(~)) 

takes the normal form (3.t) with real polynomials P and Q of  degree three. 

Remark. Since L1 is not invertible, we cannot eliminate the polynomial H 
completely. However, each monomial of H contains B or/~ as factor. This 
observation will be crucial in the proof of the existence of solitary waves. 

Proof. According to (3.3) we make the ansatz 

u(x) = A(x)q~ + + B(x)9 + + A(x)q~ o + B(x)~o~ 
+ W + ~(#; A (x), B(x), A (x), B(x)), (3.6) 

where ~ 1 =  ( I -  P0)~0 and ~/i0 represents P0~0. The transformation • is 
written in the form 

3 

fb(#;A,B,A,B) = Z dPr'ijkt#rAiBJAkBl 
r+i+j+k+l=2 

with coefficients ~r,i]kl E D(L). The nonlinearity in (2.12) is replaced by its 
Taylor polynomial of order three plus remainder term: 

N(#; u) = NI,1 (#; u) + N0,2(u, u) + Nl,2(/t; u, u) + N0,3 (u, u, u) 
U 4 + o(1~1 llut13(~) + II II~(L)), l~l + tinily<L) -* 0. 

The terms N~,m (#; ",. . . ,  ") are m-linear symmetric mappings from D(L) into 
X. 

The polynomials P and Q of the normal form depend on eight unknown 
coefficients which will be determined in the normal-form algorithm 
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P(~;  u, v) = P1,00]-t -}- P2,00lz 2 q- Po,10~t q- PO,Ol v, 

Q(#; u, v) = Q1,00/~ + Q2,00] 22 4- Q0,10# + Qo,olv. 

Inserting (3.6) into (2.1) and taking into account the system (3.4) to be 
satisfied by (V, W), we obtain, by collecting equal powers in (I~,A, B,A,B),  
linear equations for the Taylor coefficients ~r,ijal. Since we are looking for 
real solutions u of (2.1), ~r,~jkl = ~,kl;j, so we may restrict ourselves to 
coefficients with indices i + j =>k + t. In what follows, ~,-,m means a m-linear 
symmetric mapping like N,,m above, and a superscript 0 means its projection 

0 0 by Po on the space Xo. We obtain the following equations for ~o,2, ~bo,3, (J~l,t, 
in which the compatibility conditions determine the coefficients of poly- 
nomials P and Q occuring in Go,3 and G1,1 as shown in (3.1): 

2~o,2(V, LoV) -- L~o,2(V, V) = NO,2(V, V) -- t I (V) ,  (3.7) 

ao,3(v,v, v ) +  3~o°3(v, V, LoV) - Lo~o°3(v v, v) 
: PoNo,3(V, V, v) + 2PoNo,2[V, ~bo,2(V, V)], 

(3.8) 

GI,I(#, V) + ~,I(#,L0 V) - L0~°,I (/2, V) = PoNI,I(#, V). (3.9) 

In this system of three equations, notice that ~0,2 = ~°2 + ~1 has a 
component in X1 only containing the quadratic terms A 2 and •2, since 

P1No,2( V, V) - H( V) = hi A2 -I-hi A2, 

H(V)  = h2AB q- heAB 4- h3 Be q- h3B 2 

where hj , j  = 1,2,3 lie in X1. 
A very nice and important fact arising in our problem is that there is no term 

2 9 IAI (or IBI- or  AB) in No,e(V, V). Hence there is no problem of resonant 
terms at the lowest order. 

Resolution of system (3.8), (3.9) is classical (see for instance [7]); this 
allows the determination of the polynomials P and Q appearing in G(#, V) 
(see (3.1)). More precisely, the coefficient Qo,lo is given by 

Q0,10=(3N0,3 o o o 

where 
0 o ~0,2 ((0+, q~+) = ( 4 i -  L)-INo,2 (q~+, q~+).o 0 

For the calculation of the normal form coefficients and the polynomials ~,  
we implemented a symbolic algebra program (MAPLE V). The normal form 
coeffÉcients are found to be 

Pl,oo = 0, P2,oo = -¼, Po,lo = 9, Po,ol = - 5 ,  (3.1o) 
Ql,oo =4,  Q2,oo = - 1 ,  Qoj0 = - 2 2 ,  Qo,ol =47  
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The inequality Ql,ooQo,lo < 0 is crucial for the existence of solitary waves for 
the normal form system (for # > 0 here). 

4. Reduction to a system of ordinary differential equations 
involving nonlocal terms 

The normal-form algorithm yields a system of differential equations in 
(V, W) which is partially decoupled: in the equation for the central com- 
ponent V the hyperbolic component W enters only in the higher-order terms. 
It is desirable to derive an equation for V which is entirely independent of W. 
Such a reduced equation can be obtained by solving the equation for W with 
V as a parameter and inserting W = W(p; V) into the equation for V. This is 
reminiscent of a Lyapunov-Schmidt reduction. One drawback of this re- 
duction is that the reduced equation is a nonlocal equation. 

Our goal is to solve the hyperbolic part of (3.4) for W = W(#; V) where 
the central component is regarded as a parameter. Note the special form of 
the nonlinearity N(#; u), which depends on the traces of u at y = 0 only. 
Moreover, all components of N except the second vanish. For that purpose 
we investigate the linearized equation and make use of the specific structure 
of the inhomogeneous terms. From the normal-form algorithm we can show 
that it takes the form 

W(x) = L1 W(x) + PI f(x)  + R1 (4i)P19(x) + R1 (-4i)PIO(x), (4.1) 
dx 

where we can restrict our analysis to functions f and 9 of the form 

f = ( 0 ,  f ,0 ,0 ,0 ,0) ,  9 = ( 0 ,  g, 0, 0, 0, 0), 

with scalar functions f (#;  V, W) and g(#; V, W ) =  #re ~c-igim which only 
depend on the trace W ° of  W, and on V, and hence do not depend on y. The 
symbol R1 denotes the resolvent function, R1 (ik) = (ik - L1)-1. Notice that 
the last two terms are due to the coefficients q~o,2000 and ~0,0020, which have 
nonzero components in the hyperbolic subspace X1. 

There are two different types of functions appearing on the right-hand 
side of (4.1): 

f l  = P l , f  = f(#;  V, W)(O,-1, O,-2(1 + 2y)e 2y, -2ye2Y, 0), 
f2  = R1 (4i)Plg + R1 (-4i)P10 

5 o2y 1 ~,4y ._~ 2e4Y) = Ore(g; V, W)(]~,O,3Ye 2y + ~  -~,~ ,0 ,0 , -4ye  2y - ~ e  2y 
-~ gim(#; V, W) (0 , -2 ,  O, -8ye  2y --~Qe 2y --[- 2e 4y, 

4 ._2v -~y~-  - 4 e 2 '  +½e4, 0). 

Since we intend to study solutions decaying to zero at infinity, let us apply 
the Fourier transform. Our study then excludes periodic waves. The solution 
of the Fourier-transformed system (4.1) can be expressed with the help of the 
resolvent function 
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W(k)  = W l ( k )  -t- W2(k) = Rl(ik)i l(k ) ~- gt(ik)f2(k), k E JR\{0}. (4.2) 
Since the nonlinearity depends only on the traces of  the components of  W, it 
suffices to derive expressions for these traces. The following notation is in- 
troduced (cf. (3.2)): 

~0 = 00[y=0, ~1 = 01ty=0, t/0 ~--- I~01y=0, t/1 = "Clly=0, 
W ° = (~0, ~1, t/0, t/l). 

System1( ~. 1) can then be formulated as a system for these variables. The full 
vector W is completely determined by the traces~; therefore,Ait suffices to 
calculate (40, 31, t/0, t/l). Explicit expressions for Wl(k)  and W2(k) are ob- 
tained from (4.2). 

t0(k) = (2 + ]kl)-2f(k), 

~ o  ~1 (k) = ik(2 + Ikl)-2 ?(k), 
Wl(k) : (4.3) 

Oo(k) = - i sign (k)~o(k), 

O (k) = fkG(k) ,  

1 (8 + Ikl)( - ik~re(k) +40ira(k)) 
t0(k) = 1--8 (4 + tkl)(2 + Ikl) 2 ' 

2 - (4  + 51kl)0ro(k) +/k(S + 1kl)0im(k) 
~1(k) = ~ (4 + Ik])(2 + ]k[) 2 ' 

A 0  1 4(1 --]kl)0re(k ) 
W2(N) : O°(k) = 1-8 (4 + tkl)(2 + tk]) 2 (4.4) 

1 - i (k[k  I + 8k + 36 sign (k))Oim(k) q 
18 (4 + Ik[)(2 + [k[) z ' 

2 ik(1 - Ikl)~0re(k) - 4(1 - lkl)Oim(k) 
O1 (k) = ~ (4 + tkl)(2 + lkt) 2 

We observe from (4.3) and (4.4) that the multipliers on the right-hand sides 
are bounded and continuous for all k E IR except at k = 0 and are of  order 
O(1/Ikl) for Ikl --, ec. 

Hence, all multipliers are in L 2 (IR), and they represent Fourier transforms 
of  L2(IR) functions with which one has to make a convolution product with f 
or g. In fact, all these functions are continuous on IR. The inverse transforms 
of  00 in (4.3) and (4.4) decay like 1/x at infinity. The other inverse transforms 
decay like 1/x 2 at infinity. 

For instance, behavior for txt --+ ~ follows from integration by parts 
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OG 
/ e-i;])2dk 4 f  sinkx 

( 2 +  = x  ( 2 + k )  3 
0 

A 0o 

lim f ikeik~)2dk=4 f (sin___kx 
A~oo (2 + \ x 2 

-A 0 
A c~ 

lim f I k l e - i ~  =4f a-~o~ (2 °r- Ik])2 dk 
-A 0 

1 (~_) 
2x 2 +(9  

f - i  sign(k)e -4a 1 

- - d k  = - ~  + (O , 

kc k ) dk 1 
(2 + k) 3 -- x 3 

2 sin2 ( ~ ) ~  dk 
x 2 J (2 + k) 3 

Notice that the second and third functions are defined as L 2 limits in the sense 
of the Fourier-Plancherel transform. The result is that these L 2 limits may be 
represented by continuous functions. 

Continuity in x follows directly from the dominated convergence theo- 
rem, except near x = 0 in the second and third integral, where one has to split 
each integral into two integrals over (0, 1/x) and (l/x, oe) before applying the 
dominated convergence theorem. All other multipliers occurring in (4.4) may 
be treated in the same way. 

Let us now introduce spaces of continuous functions on IR with an al- 
gebraic decay at infinity depending on a positive number e, and an integer p 

C~'p = {u C C° : ]R-+ ~lsup( l  + e'x[P)'u(x)l < 

We define the corresponding norms 

lul ,p = sup(1 + e[x[p)lu(x)l, 
xEIR 

which give these spaces structures of  Banach spaces. Now we study the linear 
mapping off defined by 

( f ,  9, 9) ~ IV° = X((f ,  g, 9) (4.5) 
given by the inverse Fourier transforms of (4.3) and (4.4), where we take 
( f ,  g ) in  (G,2) 2. 

Lemma 1. For any ( f  , g) in (C~,2) 2, there is a number c > 0 such that 
I¢0 le,2 q-1~1 le,2-~-l~0 I~f~,l +lr]ll,:,2~¢e(lfte,2-j-lgle,2), (4.6) 

where c,<c(llnel + 1), i.e., ~ is continuous from (c~,2) 3 into (C~,2) 2 x Cv~,l x 
C~,2. e~loreover, if 110 is omitted from the left-hand side of (4.6), then the re- 
sulting inequality holds with c, < c. 
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Proof. Let us first study the convolution product of  a Ct,2 function with a C~,2 
function, leading to a C~,2 function. This proves the results for {0, {1 and t h 
since the convolution kernels belongs to C1,2. We have 

f (1 + ex2)dt (1 + ex2)[(1 - e + ex 2) + x/~ ( -1  + ~ + ex2)] 
(1 + t2)[1 -t- e(x - t) 2] = ~ g2x 4 + 2g(1 + 8)x 2 + (1 - -  ~,)2 

<re(1 + v~)__<2rc for e<  1. 

This shows that the estimate in lemma has a constant c~ which is independent 
of e(< 1) as far as ~0, ~1 and r h are concerned. Let us now study the con- 
volution product of a C1,I function with a C~,2 function, for estimating 
I~01,~,~. 

J (1 + vr{'.lxldt 2(1 + x/elxl) (1 +~  + 8x 2) 
(1 + ltl)[1 + e(x - t) 2] (1 + e + eoc2) 2 - 4e2x 2 

IR 

x { - ~ l n  e + ~ l n  (1 +ex2) + ~/e ( 2  +,x[Arctg(v~,x[)) } 

- (i + ~ + ~2~ _- 4T2x2 5 + Ixl + Arctg v~lxl 

where 

){ }2  t 

Cl = s u p ~  ln(l+u2)+uArctgu < 1 + ~ .  
u>0 1 + u 

Notice that the divergence in Iln e I of the estimate is not unexpected because 
the integral diverges tbr e tending to 0 (monotonic convergence theorem). 

We are now able to solve the nonlinear equation 

dw(x) =L~W(x)+H(V(x)) + RI(#; V(x), W(x)) (4.7) dx 
locally in a small neighborhood of zero. The central component 
V = (A, B, A, B) is treated as a parameter in (C,,2) 4 , and we observe that the 
dependence o f R  1 on W is only through the trace W °. There we use the linear 
operator Y{" defined in (4.5), to solve (4.7) in the form 

w ° = ~ . y ( ~ ,  v; w °) (4.8) 
for W °. A useful observation is now that the nonlinear term F(/~; u °) defined 
by (2.3) is analytic in (#; u °) for 

0 0 0 0 ,,0 = (~o, ~1, &,/~1) ~ c~.2 × c~,2 × c ,~ , ,  × co,2 -~/(~;  u °) c c~,2, I~1 < a. 
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This results in particular, from the fact that the product  of two continuous 
functions, one decaying as 1/(1 + ex 2) and the other as 1/(1 + v~lxl), decays 
at least as fast as 1/(1 + ex2). H e n c e f  and 9 in (4.1) depend analytically on 
(#,A,B,A,B, W °) , which gives the dependence of ~ ( # ,  V; W °) in (4.8). A 
direct estimation leads to 

lg(#, v; w°)l ,2 

where (4.9) 
II W0 11 ~- 1~01,,2 + l~11a,2 + Jr/01v~,l + Il11}e,2" 

For  (A,B, #) in a sufficiently small ball in (C~:,2) 2 X (--~5, (5) one can solve (4.8) 
for W °, by the implicit function theorem and find an estimate 

'{ } II W° l1 ~ c~ IA[~,21B[~,2 + 1N~22 + [AI~,2 + I#[ (IAI~,2 + IBIs,z) , (4.10) 

' c'(1 + [ln el). where c~ = 
Let us now introduce the scaling 

A(x ) =  v / [~ i~- (V/~x)e  2;x, B(x)=ll~lB(x/l~x)e 2i~, 2c= x/~lx, (4.11) 

and take e = t/~1 in (4.10) Then (4.10) becomes 

It W°ll ~ c"(t + Iln I#ll)l#l 3/2 

for any_~(2),/~(~) in a fixed ball of C1,2 and W°(#, V) is now replaced in the V 
part of (3.4). For  # > 0 this leads to the following reduced equation: 

(4.12) 
o,,00  + o0,1  12 + 

Here the prime denotes differentiation withrespect  to ~. The remainder terms 
/~j(j" = 0, l) are nonlocal functions of (A, B) with 

The first equation of (4.12) can be solved fo r / t .  Insertion into the second 
equation yields a complex second-order equation for A: 
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A " -  Q1,00A- Q0,10A~] 2 = / ~ ( / z ; A S ' , ~ , ~ ' ) .  (4.13) 

The remainder term k is of  order (9(v/fiJln #t), /~ ~ 0. Equation (4.13) is 
studied in the next section. 

5. Solitary waves with damped oscillations 

The normal-form system (3.1) is an integrabte system which admits many 
different types of  solutions, e.g., periodic solutions, quasiperiodic solutions, 
homoclinic solutions, etc.; see Iooss & PiSROtrEME [10]. This paper also treats 
the subtle problem of persistence of  normal-form solutions under (reversible) 
perturbations. 

It was shown in [8] and [10] that the normal-form system (3.1) has --- 
under certain sign conditions for the coefficients - -  a pair of solitary waves 
(homoclinic solutions) with damped oscillations which are reversible and 
which persist under reversible perturbations of  the vector field. It follows 
from (3.10) that these sign conditions are fulfilled for the present problem 
(Q1,00 = 4 > 0 Q03o = - 2 2  < 0). For/~ > 0 a pair of  reversible solitary waves 
exists for the normal-form system (3.1) and has the explicit representation 

A(x) = r0(x)e i(z'+°0(x)), 8(:,)  = rl (x)e (5.1) 
with the asymptotic expressions 

. ~ 1 

rl (x) =/0(x) ,  (5.2) 
2P0,10 Oo(x) = P1,00Px + (-Q030------) ~ t a n h  (gV~,00x) ,  

01 (X) = 00(X). 

It is shown in the sequel that these two reversible solitary-wave solutions 
persist under nonlocal reversible perturbations of  the normal-form vector 
field. We cannot directly apply the results of Iooss & PgROUEME [10] because 
the perturbations are nonlocal in the present case. We shall exploit an ar- 
gument given by KIRCt~GXSSNER in [11] which also works for nonlocal re- 
versible perturbations. 

The truncated equation (4.13) with right-hand side zero, i.e., the equation 

A~" - Q1,00A- Q050A~l 2 = 0, 

has a real homoclinic solutionA = A* = r~ which is even. We are looking for 
a reversible homoclinic solution of  the full equations (4.13) which is close to 
A*. The replacement _4 = A* + Ap leads to nonautonomous equation for the 
perturbation term Ap: 
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A; - Ql,ooAp - Qo,lo [ (A* (x) )2Ap -~- 211'  (.~)[2Ap] 

=N(~c;Ap,A;,Ap,AZ'p) @R(#;x;Ap,A;,A-p,Z~p) <5.3) 

We wish to use Banach's fixed-point theorem to prove the existence of  a 
small solution Ap of (5.3) which decays at 2 = ±co. Therefore, the linear 
operator 5e(2) on the left-hand side of (5.3) has to be inverted in some 
suitable function space. Since this operator represents the variational equa- 
tion around the homoclinic solution of the truncated system, it has a zero 
eigenvalue with eigenfunction dA*/d2. Decomposing Ap = Ap,re + iAp,irn into 
real and imaginary parts we obtain from (5.3) two linearly decoupled 
equations: 

A tt p,re - Q1,00Ap,re - 3Qo,lo[A*(~c)]2Ap,re 

= Nre ,Ap,Ap,Ap,Ap +Rre #;2;Ap,Ap,Ap,Ap , 
(5.4) 

Af,im - Ql,ooAp,im - Q0,t0 [A* (x)]2Ap,im 

= Nim(~c;Ap,A;,Ap,A%) @ Rim(#;x;Ap,A;,A%,AT'p) . 

Since we are looking for reversible solutions, i.e, solutions such that 
A(-x)  = A(x), the real part Ap,re of Ap must be even, while the imaginary part 
Ap,im of Ap must be odd. According to the argument given in [11], we can 
invert the linear operator .~re in C<2 on the left-hand side of the first 
equation of (5.4) if we restrict its domain of  definition to even functions. 
Note that this restriction eliminates the zero eigenfunction dA*/d2 of 5°re, 
which is an odd function. 

The linear operator ~Pim associated with the second equation also has a 
• simple zero eigenvalue with eigenfunction A* which is even. Therefore, 5~im is 

also invertible on odd functions in C1,2. Everything works in C1,2, so 
Ap E C22, hence A and/~ are in C1,2. Tracing back to the form of  the free 
surface t / =  Z(~), we have after a careful examination that 

Z~ = t a n ~ ( x ) =  (9( #g-fi "~ \1  + kvc2] at infinity 

and since O~/Ox ~ 1, we finally have 

Summarizing we have proved 

for  c o -  

Theorem 2. There exists a pair of reversible solitary wave solutions for the 
system (1.1), (1.2), (1.3) such that U - 1 =  (9 (#3/211n#1/(1 +#1/21~1)), 
V = (9(#v/fi/(1 + #~2)) and Z = (9(V/fi/[~l) as I~] -4 ec. 
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Remark.  It has been pointed out to us by J. C. SAtYr that these solitary waves 
do not decay exponentially. This results from the nonsmoothness of  the 
Fourier symbol at the origin, while the Fourier t ransform of  an exponentially 
decaying function is analytic in a strip containing the real axis. Because of  
(1.8), cz and fi cannot both decay exponentially at infinity, hence neither of  
them decays exponentially due to (1.5). 

Let us mention that in the papers of  AMICK [1] and SUN [16] (the problem 
is different, but a similiar method should work) it is found that the decay is 
like 1/x 2. The problem of the true rate here is different, since the principal 
part  of  the solitary wave coming from the normal form has an exponential 
decay. Here the non-exponential  decay comes from high-order terms. 
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