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Summary. For the problem of hydrodynamical stability in an infinite cylindrical do- 
main, we investigate all time-periodic solutions, not only spatially periodic ones, 
when a Hopf bifurcation occurs. When reflection symmetry is present, we show the 
existence of spatially quasiperiodic flows. We also show the existence of heteroclinic 
solutions connecting two symmetrically traveling waves that stay at each end of the 
cylinders ("defect" solutions). The technique we use rests on (i) a center manifold 
argument in a space of time-periodic vector fields, (ii) symmetry and normal form 
arguments for the reduced ordinary differential equation in two dimensions (without 
reflection symmetry) or in four dimensions (with reflection symmetry), and (iii) the 
integrability of the associated normal form. It then remains to prove a persistence 
result when we add the higher-order terms of the vector field. 

Key words. Navier-Stokes equations, infinite domain, bifurcation, center manifold, 
generalized complex Ginzburg-Landau equation 

1. Introduction 

Many classical hydrodynamical stability problems deal with flows in very long do- 
mains. An infinite domain is often a good theoretical model for these problems. It 
simplifies the linear analysis and is generally physically and mathematically justified 
for points not too close to the ends of the domain [see Mielke (1990)]. Let us consider 
flow in a cylindrical domain that has a one- or two-dimensional bounded cross-section 
1~. Typical examples of such a situation are (i) Poiseuille flow in a tube; (ii) Taylor- 
Couette flow between two concentric rotating cylinders where the cross-section l-I is a 
two-dimensional annulus; and (iii) the Brnard convection problem of a liquid heated 
from below in a long box where the cross-section 12 is a rectangle. These problems 
are paradigms of more complicated situations in which one emphasizes the effects 
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of a very long cylindrical flow domain with different types of cross-sections. These 
model problems are also very popular because they are good both for experiments and 
for mathematics. The basic symmetry property is that the system is invariant under 
translations along the length of the cylinder. In many problems, like the last two 
examples just given, the system is also invariant under reflection symmetry through 
any cross-sectional plane, so that there is no distinction between the two ends of the 
cylindrical domain. Usually, for the mathematical nonlinear stability study of such 
flows, one assumes a certain spatial periodicity. The aim of this paper is to avoid such 
a restriction. 

In the present work we consider hydrodynamical stability problems in which the 
most unstable mode is oscillatory at.criticality and has a nonzero wave number. These 
conditions lead to a classical "Hopf bifurcatioff' when one assumes spatial periodicity 
for the flow (see, for instance, Iudovich 1971; Sattinger 1971; Iooss 1972). Examples 
of this type of instability occur in Poiseuille flow (Joseph 1976), in convection in 
binary fluids [see Huppert and Moore (1976)], and in the Taylor-Couette problem 
in the case of counter-rotating cylinders (Chossat and Iooss 1985). Periodic patterns 
in the form of spiral waves traveling along the axis are effectively observed in the 
last case. However, in most experiments one first observes a juxtaposition of two 
sets of spiral waves traveling in opposite directions separated by a relatively small 
region in the middle of the cylinders. Even though this flow is periodic in time, 
it is not periodic in space, contrary to the spiral wave regime, and this flow stays 
for a long time, suggesting that it may be a nontransient solution of the Navier- 
Stokes equations. In the mathematical study that follows, we do not assume spatial 
periodicity. In a previous work (Iooss, Mielke, and Demay 1989), we concentrated 
on steady bifurcating solutions, which are relevant when the critical eigenmodes are 
steady. In the present case, we cannot assume this, because the critical modes are 
oscillatory in time. To avoid the difficulty of continuous spectra for linear operators, 
we study only time-periodic solutions, the unknown period appearing as an additional 
parameter. In this way, we recover the already-known bifurcating time- and space- 
periodic solutions (traveling waves and standing waves) and obtain new solutions no 
longer spatially periodic. 

On the mathematical side, solutions for similar evolution problems in a strip or on 
the real line were studied in previous works of Kirchg~issner (1982, 1984, 1988) and 
Collet and Eckmann (1986). Kirchg~issner's analysis (1982, 1988) reduces to the search 
for steady solutions in a moving frame; the analysis of Collet and Eckmann deals with 
propagating fronts that have a time-periodic form in a moving frame. In fact, work that 
uses the same philosophy we do goes back to Renardy (1982) and Kirchg~issner (1984), 
who treat reaction-diffusion equations on the real line (reflection-symmetric case). 
The first author focuses his analysis on two different types of non-spatially periodic 
solutions, the first one approaching a constant at infinity, the second one approaching 
periodic wave trains at infinity, the direction of propagation being opposite at both 
infinities. Kirchg~issner's work (1984) deals with an oscillatory instability having a 
spatial wave number of zero. This is contrary to our study and leads to different 
reduced systems. 

Another type of mathematical study that is also closely related to our problem deals 
with Ginzburg-Landau equations (with complex coefficients) in one space dimension. 
These are envelope equations, formally derived (e.g., by using a multiple-scale tech- 
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nique) from hydrodynamical instability problems, to take care of the whole interval of 
wave numbers corresponding to linearly unstable modes. Doelman (1989) deals with 
a perturbation of the "real" Ginzburg-Landau equation that corresponds to instability 
problems with steady critical modes (see Iooss, Mielke, and Demay 1989). The equa- 
tion studied by Doelman, as well as the one studied by Holmes (1986), is a special 
case of the complex Ginzburg-Landau equation. The structure of this model equation 
being simpler than Navier-Stokes equations, the study of time-periodic solutions re- 
duces to a second-order differential equation, with respect to the space variable, for 
the complex amplitude. Thus, spatially chaotic (time-periodic) solutions are obtained. 
The reduced problem we derive is also a four-dimensional differential equation, but it 
has a completely different structure leading to a completely integrable normal form. 
In a forthcoming paper (Iooss and Mielke 1991), we show that oscillatory instability 
with a spatial wave number of zero leads to the complex Ginzburg-Landau equation, 
not close to an integrable limit. 

The most useful tool in local bifurcation theory is the center manifold reduction 
theorem. This allows one to reduce the analysis of bounded bifurcating solutions to 
a low-dimensional smooth manifold. In the present analysis, we begin by proving 
that it is possible to use the center manifold theorem to obtain all bifurcating time- 
periodic solutions of Navier-Stokes equations in a cylindrical domain. Here the ax- 
ial coordinate is treated as the evolutionary variable, running on the whole real line; 
time is treated as another coordinate with periodic boundary condition. The idea of us- 
ing center manifold theory for elliptic problems in cylindrical domains was initiated 
by Kirchg/issner (1982) and is now extensively used for water wave problems (Mielke 
1986b; Amick and Kirchg/issner 1989) and for elasticity problems (long beams; see 
Mielke 1988). We have also used it for steady solutions of Navier-Stokes equations 
(Iooss, Mielke, and Demay 1989). The first center manifold approach to time-periodic 
solutions in parabolic systems is due to Kirchg~issner (1984), and we stay close to this 
approach. This tool was not used by Renardy (1982). In contrast to his work, we ob- 
tain the whole set of bifurcating solutions; but, unfortunately, we have no means to 
prove any stability result for these solutions, contrary to Collet and Eckman (1987). 

The organization of the paper is as follows. In Sect. 2 we prove the existence of the 
center manifold, and in Sect. 3 we relate our approach to the classical stability theory. 
Using symmetry arguments and normal form theory, as in Iooss, Mielke, and Demay 
(1989), we derive in Sects. 4 and 5 the reduced ordinary differential system for the 
amplitudes in the space variable, which gives all bifurcating bounded solutions. It 
appears that one can completely solve at least the truncated system (at any order), 
and that this gives many unusual non-spatially periodic solutions. For the full system 
(untruncated), we are able to prove the persistence of most of these solutions (see 
Sect. 6). 

The physically most interesting solution is a "defect" solution, occurring in the 
Taylor-Couette problem, for instance, which appears in the reduced system as a hetero- 
clinic connection between the two symmetric regimes of traveling waves (spiral waves 
in the Taylor-Couette problem). This regime is currently observed in experiments with 
counter-rotating cylinders. We also prove, in the reflection-symmetric case, the ex- 
istence of another type of connection between standing waves and traveling waves 
and the existence of solutions that are spatially quasi-periodic. Moreover, in cases 
without reflection symmetry, such as the Poiseuille flow instability problem, we prove 
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the existence of a solution connecting, through a static front, the basic steady flow 
with the bifurcating traveling wave. 

On the mathematical side, it should be mentioned that our study gives, similarly 
to Iooss, Mielke, and Demay (1989), a way to obtain a partial justification for the 
validity of  an envelope equation, like the Ginzburg-Landau equation, as a model 
for Navier-Stokes equations near threshold, in the case when one is interested only in 
time-periodic solutions. In this case we do not arrive at the simple complex Ginzburg- 
Landau equation but at a generalized version, as in Iooss, Coullet, and Demay (1986). 

2. The Center Manifold 

In this section we consider the Navier-Stokes equations in an infinite cylinder Q = 
x 12, where 12 is a smooth bounded domain in ~2. We give the result, proved in the 

appendix, on the center manifold theorem for time-periodic solutions; the evolution 
variable is then the unbounded space variable x ~ ~.  This result allows us to reduce 
our problem to an ordinary differential equation in two- or four-dimensional space, 
the evolution variable being x. 

The Navier-Stokes equations are as follows. 

0V + (V.V)V + Vp = vAV + f(/~, .), 
at  (1) 

V . V = 0  i n Q ,  
V = g(/.~,.) o n 0 Q  = ~ x 0 1 2 ,  

where V represents the velocity vector, p the pressure, both functions of  (x, y, t) E ~ •  
12 • ~+; /z  represents the set of  parameters (kinematic viscosity v being included); and 
f, g are functions of the cross-sectional variable y E 12 (resp. 012) only. We assume 
the existence of a family of  (x, t)-independent solutions V = V(~ .) E C 1(~-, ~3). 

We are interested in the appearance of time-periodic solutions that stay close to 
V(0) for all time t and all values of the axial variable x E ~.  The method developed 
here will, of  course, recover the well-known traveling wave solutions that are also 
periodic in x. This is the classical result for Hopf  bifurcation with an SO(2) symmetry 
group acting nontrivially on the critical eigenspace (see, for instance, Iooss 1984 
in the context of  Navier-Stokes equations). However, because the x-behavior is now 
not prescribed in advance, we also find new types of  solutions being quasi-periodic, 
homoclinic, or heteroclinic in the spatial direction, always modulated with some time 
frequency to. 

If  we look for solutions with period T = 27r/to, it is convenient to introduce the 
scaled time ~- = to t ~ S 1, so that the solutions will be 2~--periodic in ~- and to appears 
as a parameter in the equation. We decompose the velocity V into a longitudinal 
component Vx and a transversal component V• and introduce the notation 

0 
U = (Ux ,U•  = V -  V(~ = (Wx,W• = ( - p ,  vff-x-xU• (2) 

Moreover, setting ~ = (U, W), Eq. (1) takes the form 

d~0 
dx - ~ ,o20  + ~(~0 ,  ~), (3) 
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where there are no longer x-derivatives on the fight-hand side. Splitting the linear 
operator J{~,o~ into a Stokes part ~t~, a convective part s and an inertial part w%, 
we have 

with 

7{~,o~ = m s + ~ + to%, 

~ ( ~ )  = 

-V•177 ) 
v-1W• 
-vA• + V•177 ' 

-vzl• - Vj_Wx 

(4) 

(5) 

/ o ) 
0 

~ ' ( ~ )  = (V~).V• + (U•177 (~ - Vx(~177177 ' (6) 

\v- 'VPw• + (u•177 + (v~).v•177 

/ ) t~ (7) 

where V• (resp. V• .) and A• denote the gradient (resp. divergence) and the Laplacian 
in the cross-sectional variable y E f~ only. 

The quadratic part in (3) reads 

( o 1 0 
~ ( ~ ' ~ )  = (U•177 - Ux(V•177 " 

v-XU~W• + ( U • 1 7 7  / 

(8) 

From now on, we consider ~ = (U, W) as a (vector-valued) function of (r, y) E 
S 1 • ~ that will vary, according to (3), along the axial variable x E ~. In particular, 
we introduce the following Hilbert spaces: 

~O,s = HO[s 1, HS(Q)], 

where HS(/2) is the classical Sobolev space (see, for instance, Lions and Magenes 
1968), and H~ 1, HS(12)] denotes the space of HS(O)-valued functions 

U(T, .) = ~ Un(.)e in~" with U n ~ HS(~) such that 
nE?~ 

(9) 
= ~ n2~Ollu 2 bill (1 "[- 111 n HS(~t) < o~. 

n~Z 
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We will mainly need the case 0 = 0 or 1 and s = 0, 1, or 2. Additionally, we need 
the norm 

( 
Ilull-1 = sup [ uvdx,  (10) 

]]v]lHx(a ) = 1 

and we denote by H - I ( ~ )  the completion of L2(~)  with respect to this norm. ~his no- 
tation does not coincide with Lions and Magenes (1968), where H - I ( ~ )  = H I ( ~ ) , .  

The phase space ~ is set equal to 

{~ = {(U, W )  ~ ( ~ 1 , -  1 f-) ~0 ,1)  X (~0 ,1)2)<  (~0,0)3;  U -- 0 on S 1 > 3f~}, (11) 

and the linear operator ~ , o ,  has domain 

D0s  = {(U, W) E ~g;U E (~(~1,0 ("l ~0,2)3, W E (~(~0,1)3, 
(12) 

V l . U .  = W .  = 0 on  S 1 X O['~}. 

For the nonlinear mapping ~ ,  we then obtain the following theorem. 

T h e o r e m  1. For 0 > (1 + , f i7) /8  = 0.64 . . . .  the quadratic mapping ~ ,  defined 
in (8) is an analytic function from DOf ~ :=  [D0{),  ~]0 C (3g ~176 N ~o,1+o)3 x 
(~~176 the closed subspace ~ C ~ given by ~ : =  {(U, W) E g ; U  = 0}. 

Remark. The interpolation functor [., .]0 is defined as in Lions and Magenes (1968); 
in particular, we have 

1 [HS(O), Ht(~~)]o = Ht+~ whenever ~ + t + O(s - t) q?_ 7?. 

Proof of Theorem 1. Since ~ is quadratic, it is sufficient to show that N ~ : D ( ~  ~ x 
DO~ ~ --~ ~3 is bounded. We use the special structure of ~ ,  which consists in each 
component of a sum of products where one factor lies in ~0,o N ~0,1+0 and one in 
~o,0. 

The Sobolev embedding theorem (see, for instance, Lions and Magenes 1968) 
implies that HS(g2), with s ~ (0,1) and ~ C Nz bounded, is continuously embedded 
in Lq(O)  for all q < 2/(1 - s). Hence, v E ~o,o implies v E L2[S 1, Lq(~-2)] for all 
q < 2/(1 - 0). 

On the other hand, 

is equivalent to 

U = ~ "  Un einr E ~0,0 ('1 ~((~0,1+0 
nE77 

+ n2) ~ Ilunll 2 + Ilu,l12+o < 
nEZ 

With 3' E (0, 1 + 0), the estimate 

II Ill-y/(1 +0)11 u'y/(l +0) 
Ilu,li  -<   Lhu~ llu,lll+0 

2 1/2 --< Cv(1 + n2) [~/(1+~176 [(1 + nZ)~ + Ilu.lll+o] 
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implies u E y~t~,r with fi = 0 - 0y/(1 + 0). As Y@'r is continuously embed- 
ded in C~ HZ'(12)] for /3 > 1, i.e., y < (20 - 1)(1 + 0)/20, we deduce 
u E C~ 1, LP(O)] for all p < 40/[(1 - 0)(1 + 20)]. 

Now, the product mapping (u, v) ---> uv from C~ 1, LP(I2)] x L2[S 1, Lq(O)] 
into L2[S 1, L2($'2)] --- ~L ~0'0 is bounded whenever 1/p + l/q <--  89 This results in the 
inequality  89 - 0) + (1 - 0)(1 + 20)/40 <  89 which holds for 0 > (1 + .fi-7)/8. [] 

The analysis of the linear operator ~{~,,o~ involves some difficulties that arise from 
the unsymmetric form of M, ,  involving the divergence equation in the first component 
and the pressure in the fourth. In fact, it is not possible to define ~{~,o, on a domain 
DdO being compactly embedded in ~ such that the resolvent (~{~,~o - h ) - a : ~  ---> Dd{) 
exists for some h E C. One obvious reason is that Ys has an infinite-dimensional 
kernel spanned by (U, W) = (0, 0, a(z), 0), with arbitrary periodic functions a de- 
pending only on z. Moreover, for each such a ,  the equation ~{~,o,(U, W) = (0, 0, a ,  0) 
has a solution (U, W) = ((Jx('c, y), 0, 0, 0). Note that this accounts for possibly pre- 
scribed pressure gradients in the cylinder that generate nonzero flux through each 
cross-section. 

Even cutting out this kernel does not resolve the problem, as is seen below and 
in the appendix. The problem arises because the pressure at time z, which is - W z  
in our notation, is only a function of the velocity field at time z. Hence the time 
dependence is not smoothed out, which would be necessary to obtain compactness. 

To deal with the infinite-dimensional kernel, we define the projections 

Qf  = f - [f],  [f](.)  = ~ [  f( . ,  y)dy, (13) 

9~(Uz, U• Wx, W• = (QUx, Ux, QWx, W• (14) 

and decompose 19 E ~ into ~ + 9 ,  where ~ = ([Uz],0,[Wx],0) and ~ = ~V. 
Applying projectors I - ~ and ~ to (3), we obtain the system 

-~x [Wx] 

= 0, (15a) 

= [-vA• + V•177 + (V~).V__)QUx + (U•177 (~ 
0 U (15b) - V~(~177177 + ( U l . V •  - QUx(V• + o ~ [  x], 

d--~-O = ~{~ ~0 + ~t,([Ux], ~), (16) 
dx 

where 

and 

{ D(ffO = $LDO0 ~ ~ = ~ ;  

~ , ( [ u ~ ] ,  9) = ~ ( ~  + V, '~ + ~) ~ ~ =:  ~ .  
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Now, [Wx] does not appear in ~ ,  and/30-) = [Ux($, .)] is an x-independent volu- 
mic flux, according to (15a), which itself is a consequence of the incompressibility 
(Vx.U• + (cVdx)Ux = 0) and the boundary condition U• = 0 on 011, 

Hence, having fixed/3 = /30"), we may first solve (16), and then obtain the mean 
value of the pressure -[Wx] by integrating (15b). In the following, we will restrict the 
analysis to the case when [Ux] - O, which is reasonable for both examples treated. In 
the Poiseuille flow considered in Sect. 4, [Ux] - 0 is not a restriction because we can 
manage the parameter/x in such a way that it varies the flux of the basic flow V(~ .) 
such that (d/dtx)[V(x~ x, .)] ~ 0. In the Couette-Taylor problem considered in Sect. 
5, we rely heavily on the reversibility property that is related to the invariance under 
reflection x ~ - x .  To keep this, we have to impose [Ux] -= 0, which also agrees with 
known experiments and numerical simulations. Let us note that in previous classical 
studies that impose periodic boundary conditions, the pressure is then periodic (see, 
for instance, Chossat and Iooss 1985); thus, the spatially periodic solutions we obtain 
in the present paper may be slightly different from the classical ones (see Edwards, 
Tagg, Dornblaser, and Swinney 1990 and Sect. 6.1 for this delicate point). 

Of course, a time-varying [Ux] could give rise to interesting phenomena; in par- 
ticular, it would destroy the autonomy of the system and hence the symmetry under 
time-shift that is exploited below. 

In the appendix we prove the following results on the linear operator ff(~,,~. 

Theorem 2. There is a positive 8 such that the resolvent (~,o~ - A) -1 : ~ ~ D(~s 
is a meromorphic function of A E C~ := {A E C; [Re A I < 6(1 +] Im al)} (see Fig. 
1). 

i) In C~ there are only finitely many eigenvalues of ffs (i.e., poles of (ffs - 
A)-I), each having a finite-dimensional generalized eigenspace. Functions in these 
eigenspaces are finite sums of terms such as einTtgn(y). 

ii) Moreover, for any fixed 0 E [0, 1] and for A E C~ with IAI - - ,  the following 
estimates hold: 

Ildc ,  - = (17)  

- = ( 1 8 )  

ImP. 

\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ ,  

Fig. 1. Spectrum of ffg.,,o; the complement of region C~ is hatched 



Bifurcating Time-Periodic Solutions of Navier-Stokes Equations in Infinite Cylinders 115 

Remarks. i) The decay estimate (18) holds only for the restricted resolvent 
- a)- 14, however, this is sufficient, as the nonlinear terms ~t , ([Ux],  t)) only 

have values in a3. 
ii) We cannot expect Os - A) -1 to be meromorphic in the whole complex plane. 

In fact, it is shown in Example A.6, at the end of the appendix, that the eigenvalues 
may have points of accumulation. However, the only one occurring on the imaginary 
axis is the origin, which has the particularly simple structure exploited above. 

Theorem 2 implies that ffs has for any (/z, o9) only a finite-dimensional, isolated 
spectral part on the imaginary axis-- let  us call it ag o for (/z, o9) = (0, w0) (to be 
specified later). The corresponding ffs projection ~o is defined by the 
Dunford integral 

~0 _ 1 f r ( f f s 1 7 6 1 7 6 1 7 6  - idA,  
2i7r o 

where Fo C Ca is a curve surrounding the eigenvalues on the imaginary axis. Hence, 
7s 0 = ffs has eigenvalues only on the imaginary axis. Now, for (/z, o9) close to 
(0, too), we know by perturbation theory [see Kato (1966)] that one can define a ~,, , ,o- 
invariant projection ~o o, on a finite-dimensional invariant subspace ago o, using the 
same curve F0 as in the Dunford integral, and that the restriction ~s176 , '---- ffs 
has only a finite number of isolated eigenvalues, all close to the imaginary axis. On 
the other hand, letting ~ .o ,  - _ 0 agl _ ~1 9~ and 7~1,, o = - I d ~  ~ , , o ,  we obtain the infinite-dimensional part 

~,,o - ~,,o~- ~,o,1~1 nD(~). 
If we split 0 into ~o + ~1 ~ ago + agl (16) takes the form 

o = o + ~ , , o ~ o  + , 
(19) 

With ~, , ,o = ~'~,,o 0 and D[Or ~ = ~l,,o?tDOr176 it follows by Theorem 2 that 
~ , o  satisfies 

IlOc' ,  c - A) []:e(%,~,D[O~kJ]) -< (20) 1 + la] 1 - ~  

for all 0 E [0,1] and A ~ Ca with a possibly smaller 6 > O. Hence, we may define 
the Green's function 

1 fI" ax'~{71 - a ) - l d h  for - x ~E ~-+ - {0}, (21) C~l(X) = ~ e (a t*,o~ 
+ 

where F+ = {A E C;ReA = -T-(6/2)(1 + ]ImA])}. With (20), we now estimate 

[l~l(x)]l~e{%o DLOCk~)oj) <-- Co(1 + ]xl-~ -aJx[/2 for all x # 0 and 0 E (0,1]. (22) 

This shows that the center manifold theory, as developed in Mielke (1986a) or 
Vanderbauwhede and Iooss (1991) is applicable when, according to Theorem 1, 0 is 
chosen in ((1 + ~ ) / 8 , 1 ) .  
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Theorem 3. For each integer k there are neighborhoods Gk of 0 in ~go and ~k  of 
(0, wo) in •2 and a C k function CTp : o~k • ~k ---> ~l  such that the manifold 

Mc = {0 = 0o + dp(/~, w, 00); (/.L, w, 00) E ~ k • ~k}  

contains every small bounded solution of (19) and hence of (16) and (1). Moreover, 
every solution of the reduced equation 

d~0O = ~~ + ~'~ 0o 0o)) + dp(/x, 0), (23) 
+ ~~ - 74~ + o ( ~ ,  ~o, 00)] 

yields through 0 = Oo + d~(I.~, w, 00) a solution of (16). 
If  the system (16) is equivariant with respect to some symmetry or if it is reversible, 

then so is (23). 

Remark. We notice that the coordinate 0o in the theorem differs from ~00 in (19). This 
results from the possibility of parameterizing the center manifold with elements of 
~o, which is simpler than using elements of ~ ~  o. 

One special symmetry of the problem arises from the autonomy of (1), which 
propagates on (16) provided that [Ux] is independent of ~-. From Theorem 2(i) we 
know that 00 ~ ~o is of the form 

N 
90(7, y) = ~ Are imr~(y )  (real sum). 

r = l  

The reduced equation (23) can now be written in terms of the complex vector ~1 = 
(A1 . . . . .  AN), to give 

d~[ - L0~[ + N(/x, o~, ~t), (24) 
dx 

where all eigenvalues of the linear operator Lo are purely imaginary. Now, because 
(16) is invariant under time-shift r ----> ~- + a ,  so is (23). This implies that (24) is 
invariant under the one-parameter group of transformations T~ 

To~(A1 . . . . .  AN) : (eimlaA1 . . . . .  eimuaAN), (25) 

i.e., we have 

T~Lo = LoT,~ and T~N (tz, w, ~l) = N (t z, w, T,~I). (26) 

3. Spectrum of ~ ,o~ Near Criticality 

Let us come back to the Navier-Stokes equations (1) linearized around V ~~ This sys- 
tem is translationally invariant, so let us denote by (x, y) --> Uk(y)e ikx an eigenvector 
belonging to the eigenvalue o-(/~, i k). The classical hydrodynamical instability thresh- 
old (criticality) occurs when the eigenvalue of largest real part O'o(i x, ik) satisfies the 
following properties (where criticality is defined by /x = 0) 

Reo'o(0, ikc) = O, ~. Reo-o(0, ikc) = O, 3-~Reo-0(0, ikc) > O, (27) 
Ok c~l~ 
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and Reo-0(/x, ik )  is maximum at k = kc, IX = 0 (see Fig. 2a). Further on, we assume 
that kc ~ 0 and Imo-0(0, ikc) = w0 ~ 0. It follows from these properties that one 
can write the Taylor expansion of o'0(ix, A) for (/x, A) in N x C near (0, ikc) under 
the form (indices r and i mean real and imaginary parts) 

~ro(ix, A) = i w o + a i x + e l ( A - i k c ) + e 2 ( A - i k c ) 2 + e 3 i x 2 + e 4 i x ( A - i k c ) + h . o . t .  (28) 

where ar > 0, el E N, e2r > 0. We check that the neutral stability curve of Fig. 2b, 
given by Reo-0(ix, ik)  = 0, takes the form 

tx = Ixc(k) = e2r (k - k~) 2 + h.o . t . ,  (29) 
ar 

and, on this curve, we have 

Imo-0(ixc(k), ik )  = wc(k) = w o + e l ( k - k c ) + (  aie2_r ar -- e2i ) ( k - k c ) 2 + h . o . t .  (30) 
-g-  

Notice that K0(IX, ik)  is an eigenvalue belonging to Uk(y)e-ikx; however, one cannot 
use (28) for A near - i k c .  

We wish now to link the above knowledge of the spectrum of the traditional lin- 
earized operator for Navier-Stokes equations to the spectrum of our new linear operator 
ffs for (IX, w) near (0, w0) (see Iooss, Mielke, and Demay 1989). In fact, when 
Reo-0(ix, ik)  = 0, i.e., when IX = Ixc(k), we obtain a time-periodic solution of the 
linearized Navier-Stokes equations of the form (Jk(y)eikXe i~ with w = wc(k). With 
our new formulation in t~ = (U, W), this solution corresponds to the existence of an 
eigenvalue ik for ~s hence, because k r 0, it corresponds to the same eigenvalue 
for ffs with an eigenvector of the form ('r, y) ~ t~(y)eiL In addition, we observe 
that ~(y)e  - i t  is an eigenvector belonging to the eigenvalue - i k  of ffs Hence, 
for /x = Ixc(k) ,w = O)c(k), we know that eigenvalues +-ik of ffs are on the 
imaginary axis, and, by construction, other eigenvalues of this operator do not belong 
to this axis. 

Now, what happens for the spectrum of ffs if (/x, w) lies in a neighborhood of 
(0, w0), but not necessarily on the neutral curve IX = Ixc(k), w = wc(k)? 

From (28) we may observe more generally that if Re o'0(ix, A) = 0, we have 
an eigenvalue A for ffs where to = Imo-o(ix, A). Here A is not necessarily purely 

Fig. 2a. 
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p . c ( k ~ g !  unstable wave numbers 
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Fig. 3. Curve hr(t z, to) = 0 

imaginary, so we obtain new information on the spectrum of ffs Let us solve the 
system 

Retro(/Z, h) = 0, w = Imtro(/Z, h) 

with respect to h. Provided that coefficient el is not zero, we obtain 

e2 h(/x, to) = ikc - l [ a t z  - i(to - too)] - [a/x - i(to - too)] 2 - e3/z2 
el e~ el (31) 

e4 + ~-~1/z[a/~ - i(to - too] + h.o . t .  

and Re h = 0 again gives the neutral curve, now in the form (see Fig. 3) 

e2r /z -- /zc(to) = (to - too) 2 + h.o. t .  (32) 
are~ 

Hence for (/z, to) close to (0, too) the spectrum of ffs contains two eigenvalues h and 
close to the imaginary axis, with corresponding eigenvectors of  the form ~(y)e i'~. 

Case of a Reflectional.Symmetric System 

Let us now assume that our original system is invariant under the reflection symmetry 
x --~ - x  and assume that V (~ respects this invariance, i.e., V~ ~ = O. This invariance 
propagates on the perturbed Navier-Stokes system satisfied by U and also on the 
linearized system. Let us define the linear representation S of the symmetry x --~ - x ,  
as 

S(Ux, U~)(x ,  y) = ( - U x ,  U •  y). 

Then, if (dk(y)e ikx is an eigenvector, so is SUk(y)e -ikx, belonging to the same 
eigenvalue. Hence, we have in this case 

O'o(/Z, ik)  = O-o(/Z, - i k ) .  
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Now, for our formulation in t9, let us define the corresponding symmetry operator 
S by 

S ( U , W )  = (-Ux,Uj_,Wx,--W/), S 2 = I ;  (33) 

then the system (3) is now reversible. This means that we have the anticommutation 
properties 

S~{~,~ = -~{~,~S S ~  = - ~  o S. (34) 

We then have for the system (16) 

S~{~,~ = -~{~,~S, S~([U~] ,  9) = - ~ ( - [ u ~ ] ,  99); (35) 
hence, this system is also reversible whenever [Ux] = 0." 

For all reversible systems, if A is an eigenvalue, then -A  is also an eigenvalue, 
corresponding to the symmetric eigenvector. Finally, for (#,  w) = (0, w0), we have 
two double semisimple eigenvalues +ikc with the following eigenvectors 

{ 19o(y)e i~, S~o(y)e -i~ ~ ikc, (36) 
~o(y)e -jr, S19o(y)e i~ E - i k c .  

When (/x, o9) is near (0, oJ0), these two eigenvalues split into four simple eigenvalues 
__-A, _-2-A that are symmetric with respect to both axes in the complex plane, where A 
is given by (31). 

Remark. The basic fact here for ensuring the semisimplicity of eigenvalues is that 
the coefficient el in (28) is r 0. If el = 0, then we obtain Jordan blocks as in 
Iooss, Mielke, and Demay (1989) by differentiating ffs e i~ = i k19~ e i~ with 
respect to k at (/z, o9, k) = (0, o90, kc). 

We sum up these results by the following proposition. 

Proposition 4. Assume that we have a hydrodynamic stability problem in a cylindrical 
domain such that at criticality, the eigenvalue of largest real part O'o(IX, ik ) verifies 

0 
-:-;-, Imo-0(/x, ik)[~=o,k=kc ~ 0 (el ~ O) with kc ~ 0; 
OK 

then the generic situations are as follows: 

i) In the non-reflectionally symmetric case, there is a pair of simple eigenvalues 
+-i kc on the imaginary axis for ff{O,o~o whereas the remaining part of its spectrum 
is away from the imaginary axis. For (I ~, w) close to (0, wo), the perturbed pair 
A,-A of simple eigenvalues of ff{g,o~ is given by (31), the eigenvectors still being 
of the form 19(y)e i~ and 9(y)e -i~, and the remainder of the spectrum stays away 
from the imaginary axis. 
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ii) In the reflectionally symmetric case, the results of  i) are still valid except for 
two facts. The eigenvalues +ikc  are now double semisimple, splitting into four 
simple eigenvalues +-A, +--A, and the critical eigenvectors have the structure given 
by (36). 

4. Amplitude Equation in the Non-Reflectionally Symmetric Case 

In this section, we consider the amplitude equation for the cases when the system is 
not invariant under the symmetry x --+ - x .  Typical examples are Poiseuille flow in 
a tube of any section or spiral Couette-Poiseuille flow between concentric (possibly 
rotating) cylinders (see, for instance, Joseph 1976 for details of the classical analysis). 

Following the results of Proposition 4 and Theorem 3, the bifurcating time-periodic 
solutions, bounded for x E N, are solutions of the following complex amplitude 
equation 

dA  
- ikcA + N(tz,  09, A, A), (37) 

dx 

where A(x)  is defined by the decomposition of the two-dimensional vector t)0 in g0 
and 

gO = Ae i~o (y  ) + Ae- ir~o(y  ) + dP(l~, 09, A,-A), (38) 

the vector field qb taking values in ~g and giving explicitly the center manifold. 
We also know, from Theorem 3, that (37) is equivariant under the group T~. This 

means that for any a we have 

N(t  z, 09, ei~ e-i~ = eiaN(tz,  09, A, A); 

hence Eq. 37 can be written in the form 

dA 
- ikcA + AM(t*,  09, IAI), (39) 

dx 

where M is an even function of its last argument. From the linear results obtained in 
Sect. 3, we have in addition the following identity 

A(/z, w) = ikc + M(/, ,  09, 0) (40) 

with A given by (31). Let us rewrite Eq. 39 in polar coordinates defined by 

A = rei(~cx+~); (41) 

then we obtain the system 

dr = rMr(tZ ' w, r) = hr(t*, w)r + br r3 -}- r3C(r 2 + [/zl + [w - r (42a) 7-s 

dd-~x = Mi(t*,09, r) = h i ( / z , w ) - k c +  bir 2+ r2C(r 2 +l/zl + [w-09ol),(42b) 
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which has the same form as the usual normal form for Hopf bifurcation. Notice that 
here the system (42) is exact, being naturally in normal form, due to the equivariance 
under T~. We first obtain a periodic family of solutions 

Ao(x) = ro ei(kc+~)x+i4~, q~ ~ 1~ (43) 

where r0 and/3 are defined by 

Mr(l~, o9, ro) = O, /3 = Mi(l~, o9, ro). (44) 

We may observe that ro ~ ~/-hr/br ,  and because h r b r  < 0 is equivalent to 
el br(~ - /zc(og)) > 0, we obtain that the spatially periodic solution (43) bifurcates 
supercritically (/z >/xc(og)) for elbr > 0 and subcritically for elbr < O. 

Now let us show that the solution (43) corresponds to a traveling wave regime for 
Navier-Stokes equations (1). We first have for the projection on the critical space 

9o(z, x, y) = roei[(kc+[~)x+~+4)]~o(y ) + C.C. 

Let us now denote by o'a the shift x ~ x + a; then we have the following invariance 
property 

Tk.o--,~9o = 90, k = kc +/3 .  (45) 

This invariance propagates on the center manifold due to the commutativity of T and 
o- with qb (see Theorem 3); hence, the full solution also satisfies 

Tk.o- - .9  = 9. (46) 

This means that, for any a E R, 

9(~" + ka, x - a, y) = O('r, x, y); 

hence, 9(z, x, y) takes the form ~lt(kx + ogt, y), which is a traveling wave with ve- 
locity -og/k, that is both space- and time-periodic. Hence, we recover the classical 
spatially periodic traveling waves bifurcating from the basic flow. In fact, we can 
prove the following theorem. 

Theorem 5. Consider the generic situation of Hopf bifurcation for a hydrodynamic 
stability problem in an infinite cylindrical domain, without reflection symmetry. Sup- 
pose we have values of the bifurcation parameter t z and the frequency o9 such that 
the classical time- and space-periodic traveling waves solutions exist (super- or sub- 
critically). Then, for these IZ and o9 there also exists a two-parameter (shifts in space 
and in time)family of time-periodic solutions in the form of static (weak)fronts of 
traveling waves, joining the basic steady flow with the traveling waves, through a 
front that does not move with time. 

Remark. For a fixed value of /z ,  the values of the frequency w that give these nontriv- 
ial bifurcating solutions are either in a bounded interval centered on o90 if bifurcation 
is supercritical ( e l b r  > 0 and e lAr  < 0), or outside such an interval if bifurcation is 
subcritical (elbr < 0 and elAr > 0). We show such an interval in Fig. 3. 
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Basic flow 

r[ 
ro = 0(~, r ) 

o [ o(~.~) 

Fig. 4. Weak front of traveling waves (case Ar > O) 

Traveling waves 

Proof. All other bounded solutions r (x )  of (42a) are implicitly given by 

f r x = xo + d o  (47) 
0/2 pMr(tx, to, p) ' 

and they are such that when x tends toward -+~, r(x)  tends toward 0 or r0, depending 
on the sign of Ar (see Fig. 4). To make the discussion more concrete, let us explicitly 
give r (x )  by solving (42) truncated at cubic terms 

rZ(x) _- rZr2(0) 
r2(0) + [r 2 - rZ(O)]e-Xrx" 

If  we return to the form of A(x)  = r (x )e  i[kx+g~ where k = kr + / 3  and (h now 
tends toward different constants at _+oo, and we reconstruct ~, the theorem follows.t~ 

Remark. The type of front-like solution we obtain looks the same as the one obtained 
by Coullet and Eckmann (1986) on a particular problem. 

5. Normal Form of Amplitude Equations in the Reflectionally Symmetric Case 

In this section, we consider the amplitude equations for those cases when the system 
is invariant under the symmetry x ~ - x .  Typical examples are Couette-Taylor flow 
between concentric rotating cylinders and the Rayleigh-B6nard convection problem in 
a long parallelepipedic box. 

Following the results of Proposition 4 and Theorem 3, the bifurcating time-periodic 
solutions, bounded for x E ~ ,  are solutions of the following system of complex 
amplitude equations 

I dA 

dB -ys 

= ikcA + N o ( # , w , A , B , A , B ) ,  

= - ikcB + NI(/Z,to,A,B,A,B), 
(48) 
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where A and B are defined by the decomposition of the four-dimensional vector ~0 in 
~o0 and 

fO = Aeir + Ae-ir 

+ Beir + -Be-ir + cb(tz, oo, A, J~, B, B--), (49) 

the vector field qb taking values in ~ and explicitly giving the center manifold. 
We know from Theorem 3 that (48) is equivariant under the group -I'~ and is 

reversible. This first means that, for any a ,  we have for j = 0,1 

Nj(tz ,  w, eiC~A, eiaB, e-iaA, e-i~-B) = eiaNj(tx,og,A,B,A,B). (50) 

Secondly, reversibility of (48) has to be understood with the representation of the 
action of $ on (A, B), which is, by construction, (A, B) ~ (B, A). For (48) this leads 
to 

N0(/x, w, B, A, B, A) = -Nl( /x ,  w, A, B, A, B). (51) 

Now, we can also arrange the system (48) into "normal form." This means that we 
can choose suitable coordinates such that our system, truncated at any fixed arbitrary 
order, is in the simplest form possible. This normalization results directly from the 
structure of the linear operator in (48), which is diagonal here. It is a classical result 
(see, for instance, Elphick, Tirapegui, Brachet, Coullet, Iooss 1987) that one can 
choose coordinates such that the truncated vector field (P0, P1) commutes with the 
action of the fundamental group of the linear part: (A, B) ~ (eikcxA, e-ikcxB), x 
~. We notice that this group action differs from the action of T~, contrary to the case 
treated in Sect. 4. 

It is then easy to see that the normal form of the amplitude equation (48) is as 
follows 

dA AP[t  x, ~o, IAI 2, [BI2], -d-x = ikcA + 

dB - i k c B  - Be[Ix,  w, ]B[ e, IA[2], dx 
(52) 

where P is a polynomial in its two last arguments taking complex values such that 
P[0, o90, 0,0] = 0, and where, by construction, 

ikc + POx, o9, 0,0) = h(Ix, oo) (53) 

is given by (31). 

Remark. It may be expected that it is possible to show that the coefficients of the 
principal part in IA[ 2 and [nl 2 in polynomial P are the same as in usual Hopf bifurcation 
computations in presence of 0(2) symmetry, as in Chossat and Iooss (1985), multiplied 
by the factor (e l ) - I .  The analogous statement for the time-independent case is proved 
in Iooss, Mielke, and Demay (1989). 

In fact, the full system (48) may be written under the form of a vector field of the 
form (52) completed by adding a vector field (R0, R1) = ~[(]AI + [nl) N] that satisfies 



124 G. Iooss and A. Mielke 

invariance properties of  (50) and (51). This will be useful for studying the precise 
structure of  bounded solutions of (48). 

Let us study in this section the bounded solutions of the normal form (52). We 
introduce polar coordinates 

A = roe i(kcx+O~ B = r l e  -i(kcx+01), (54) 

and then obtain a system in ro and rx uncoupled from the phases 

dro r 2, r 2) rotAr(ix, 09) + brr  2 + Crr21 + h .o . t . ] ,  (55a) = roPr(ix, o9, = 

"~X = - r l P r ( i x '  r r 2, r~) = - r l [ A r ( i x ,  o9) q- Cr r2 + brr~ + h.o. t .] ,  (55b) 

{ dd---~-x~ = Pi(IX, w, r 2, r 2) = Ai(IX, w) - kc + bir 2 + cir 2 + h .o . t . ,  (56a) 

= Pi(IX, o), r 2, r 2) = Ai(IX, o9) - kc + cir 2 + bir 2 + h .o . t .  (56b) 

We have reduced the problem to the study of the two-dimensional vector field in 
(r0, r l ) ,  which appears to be integrable~ We can, of course, restrict the analysis to 
the quadrant ro - O, r l  ~ 0. In fact, if br r 0 and Cr -- br ~ O, we have an explicit 
integral for the system (55) truncated at the cubic order 

H(ro, r l )  = (rorl)2br/(cr-br)[,'~r/br q- r 2 + r~]. (57) 

We have no explicit integral for the higher-order system, but it is not hard to show 
that the trajectories are very similar to the ones obtained for the cubic vector field. 
In fact, equilibria, other than 0, are (r0, 0), (0, r0), which exist for Arbr < O, and 
(r l ,  r l ) ,  which exists for Ar(br + Cr) < O, where 

Pr(IX, o9, r 2, O) = O, Pr(IX, o9, r 2, r 2) = 0. (58) 

The axes r0 = 0 and r l  = 0 are invariant manifolds on which the dynamics are easy to 
determine. Equilibrium points (r0, 0) and (0, ro) are saddles for ar(br - Cr) > 0, and 
nodes for ar(br - Cr) < 0, and equilibrium point (r l ,  r l )  is a saddle for Cr 2 -- b 2 < 0 
and a center for Cr 2 - b 2 > 0. Trajectories cut the diagonal orthogonally except 
at the equilibrium points 0 and ( r l ,  r l ) .  If  (ro(x), r l (x))  is a solution of (55), then 
(rl(--x), r o ( - x ) )  is also a solution (symmetric with respect to the diagonal). Because 
the divergence of the vector field has the sign of (r 2 - r~)br, it does not cancel except 
on the diagonal; hence, any closed orbit is symmetric with respect to this diagonal. 
Concerning the trajectories connecting equilibrium points, we remark that they are 
explicit on (57); the proof of their existence for the higher-order system (55) follows 
from perturbation arguments and is left to the reader. We show in Fig. 5 the phase 
portraits in the plane (ro, rl)  in the c a s e  }if ~> 0 (which is not a real restriction), 
depending on the values of the main nonlinear coefficients (br and Cr) in Pr. 

Equilibrium solution 0 corresponds to the basic solution V (~ of (1). Now, the 
solution of the form (r0, 0) gives 

Oo = flox + qbo with ko = kc + r = hi(t x, w) + bir 2 + h .o . t . ,  (59) 
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Fig. 5. Phase portraits (h, > 0) depending on coefficients of Pr 

and the corresponding flow ~0 on the center manifold has the form 

fOo("r, x,  y) = roei[k~176176 + c.c. ,  (60) 

which leads again to the invariance properties (45) and (46). This solution would 
then correspond to traveling waves, as well as the symmetric solution (0, r0) of (55a), 
which travels in the opposite direction. In fact, up to now, we showed only that this 
result is true on the truncated system (at any order!), and we need to show what 
happens when we take into account the "flat terms" (R0, R1), which are not in normal 
form. This is done in the next section, where we show that we indeed have traveling 
waves for the full problem. We recover, in fact, one of the classical solutions obtained 
when assuming spatial periodicity, giving in such a case Hopf bifurcation in presence 
of O (2) symmetry. In the case of the Couette-Taylor problem of flow between counter- 
rotating cylinders, the spiral structure of the traveling waves results from the structure 
of ~00(y), which is a vector field function of the radial coordinate r multiplied by 
exp(imO), leading to a velocity vector field depending only on (r, k x  + oot + mO); 
see Chossat and Iooss (1985). 

The solution of the form (rl, rl)  gives 

~bj =/31x +(oj,  j = 0,1 

with kl = kc +/3t  = Ai(/x,w) + (bi + ci)r 2 + h .o . t . ,  (61) 
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and the corresponding flow f0o on the center manifold has the form 

~o(~', x, y) = rleit~+k~x+4~ + rleit~-k~x-4~d$~Oo(y) + c.c. (62) 

This principal part of the flow satisfies the following invariance properties (o- is defined 
in Sect. 4) 

O'2~'/k~O = ~0, T~o'~/kO0 = ~O0, (63) 

and 

Sf00(~ ", x, y) = ~0(~', - x ,  y) provided that 4)0 = - 4 ) 1 -  (64) 

Moreover, any solution in the family is obtained by successively applying the linear 
operators T(rj_4~0)/2 and ~r_(01+,~0)/2k tO the solution given for 4)0 = 4)1 = 0. These 
properties propagate on the center manifold due to the commutativity of T and o- with 
~b in (49); hence, they also apply to the full solution ~ of (16). It is then clear that we 
recover "the standing waves" obtained classically when assuming spatial periodicity-- 
see, for instance, Chossat and Iooss (1985). We show in the next section that this 
family of standing waves indeed exists for the full system (48), even in considering 
"flat" high-order terms (R0, Rl). 

Remark. If e I < 0, we see in Fig. 3 that the case shown in Fig. 5 (Ar > 0) corresponds 
to/x > /~C(~o). Then, we observe that the situation br < O, (br - Cr) > 0, which gives 
saddle points for the traveling waves, corresponds in fact to the situation when, in the 
classical spatially periodic analysis, they are attracting nodes for the usual stability 
analysis in the class of spatially periodic solutions (see Chossat and Iooss 1985). The 
same remark holds for the standing waves when (br + Cr) < 0 and (br - Cr) < O. 
Now, if el > 0, the same case corresponds to the phase portraits for Ar < 0. 

Closed orbits in the (r0, r l)  plane correspond to periodic solutions (ro(x), r l(x))  
with some period denoted by H. Let us show that this leads to spatially quasi-periodic 
solutions with two basic frequencies. In fact, we can first choose the origin in x 
such that r0(0) = rl(0) (there are two such points); then to(x) = r l ( - x )  by the 
uniqueness of the solution of (55), and we have, after integrating the phases, 

00 = / 3 x  + ho(x) + 4)0, 
~1 /3X -- h o ( - x )  + 4)1, (65) 

where ho is H-periodic in x with 0 mean value, and where 

l f0U /3 = -~ Pi(tz, ~o, r~(x), r~ ( - x ) )  dx.  (66) 

Now the principal part 00 of the flow has two fundamental spatial periods, H and 
27r/k, where k = kc + /3 ,  and this property clearly propagates on the full solution 
~. For any "good" fixed value o f / z  and ~o, there is a four-parameter family of such 
solutions: one parameter corresponds to the level curves in the (r0, r l)  plane and the 
three other parameters correspond to independent shifts on the phases (4)0, 4)2) and on 
the origin in x. The free shift on the time origin is then included in the phase shifts. 
This shows that we have a large family of solutions both spatially quasi-periodic and 
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time-periodic for the normal form. We show in Sect. 7 that most of these solutions 
persist when we study the complete vector field (including "flat terms"). 

Concerning the heteroclinic connections between saddles in Fig. 5 joining the two 
symmetric traveling waves, we show in Sect. 6 that such solutions persist for the com- 
plete system. In addition, we show that the separatrices joining the standing waves 
with the traveling waves and the trajectories connecting nodes persist for the complete 
vector field. Other heteroclinic connections do not persist in general. All these solu- 
tions physically look like juxtapositions of the two limiting regimes connected by a 
region of the space of size O(Arl). In the case of a heteroclinic connection of the two 
symmetric traveling wave regimes, this is a "defect" type of solution (see Coullet, 
Elphick, Gil, and Lega 1987 for details and references on defects in waves). This 
solution is clearly observed in experiments, especially in the Couette-Taylor problem, 
under the form of two symmetric spiral wave regimes with respect to a horizontal plane 
traveling in opposite axial directions and rotating in the same azimuthal direction. 

6. Existence of the Defect Solution in the Reflectional-Symmetric Case 

In this section we consider the same problem as in the previous section, but we now 
consider the complete system by adding to the normal form (52) the "flat terms" 
(g0, R1) = q(lA[ + IBI)N], which satisfy only invariance properties (50) and (51) 
(they are not in normal form). We show here that the traveling wave and standing 
wave regimes are still there, slightly modified, and we show the persistence of the 
heteroclinic connection between the two symmetric traveling waves. We give only 
sketches of the proofs for other types of connections. 

6.1 Persistence of Traveling Waves 

Since the choice of variables (54) is only well adapted for the normal form, we shall 
now use the following, which holds for [AI ~ 0 

A = re i(kcx+o~ B = B'e i(kcx+q'~ (67) 

where r and ~0 are real, while B' is complex. The rotational invariance (50) of system 
(48) then allows us to uncouple the phase ~b0. Let us define the vector field (48) in a 
precise way, using the normalized part and using (51), as 

{ d A  = ikcA + AP[IX, o9, Ill 2, IBI 2] + g(ix,o9 ,A,B,A,B), 
(68) 

-d--x - i k cB  - BPEIX, o9, Inl 2, IA123 - R(IX,Og,B,A,B,A). 

Then this system becomes 

f -~x = rPr(ix, o9, r 2, I B 'l 2) + Rr(IX,O9 ,r,B ',r,B'), 

a n '  _ - n ' t 2 i k c  + P(IX, o9, IB'I 2, r 2) + iPi(ix, to, r 2, IB'I 2) (69) 

dx + 1 iRi (Ix,to ,r ,B ',r ,B')] - R(IX, o9, B ', r, B', r), 
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dt)o _ Pi(tz, w, r e, IB'I 2) + !Ri(lJ~ , o1, r, B',  r,-B'), (70) 
dx  r 

where we observe that system (69) is uncoupled from equation (70). The two equations 
(69) lie in N • C, and (ro, 0) is an equilibrium of this system if R ~- 0, where r0 
is given by the solution of (58). Using the fact that R = 6[(r + IB'[)N], we now 
show that a unique equilibrium solution of (69) still exists close to (r0, 0) when R is 
present. In fact, the eigenvalues of the linearized operator at the equilibrium (ro, O) 
for the system (69) with no R are of the form 2brr2o + h .o . t ,  and +-2ikc + h .o . t .  It 
is then easy to show for N -> 4, using the implicit function theorem, that there is a 
fixed point of the vector field (69) of the form 

(r~, B;) = (ro, O) + (~(ro) u-2,  G(ro)N). (71) 

Now, we have for the phase 
r ~b0 = /3~x + 050 with /30 = /30 + G(ro) N-l ,  

and it is clear that the principal part of the flow g0, which takes the form 

fOo(r x,  y) = r~eiEk;x+~+4~~ + B~eiEk;x+~+4~~ + c.c. (72) 

(where k~ = kc +/3~) then leads to traveling wave solutions for (16) that are both 
time- and space-periodic. 

Remark. In the Couette-Taylor problem these traveling waves take the form of spiral 
waves, as noted in Sect. 5. One result coming from the present analysis is that these 
spiral waves have a zero mean mass-flux through any cross-section of the cylindrical 
domain. In fact, the classical analysis that assumes only spatial periodicity is not able 
to say whether this mass-flux is zero or not (since the solution breaks the reflection 
symmetry in any case). We might indeed impose a nonzero small flux in (16), which 
now breaks the reversibility symmetry. This perturbation propagates as a nonreversible 
term in the amplitude equation (68), which is still rotationally invariant. Hence, the 
hyperbolic equilibrium point (71) of (69) persists under this perturbation. Thus, for 
each imposed small flux we obtain a unique traveling wave. The classical analysis 
shows that imposing a periodic pressure leads to some well-defined mass flux. The 
open question is whether this flux is zero. Recent numerical experiments suggest that 
this is not the case (Edwards, Tagg, Dornblaser, and Swinney 1990). 

6.2 Existence of Defect Solutions 

In Sect. 6.1 we showed the existence of the traveling wave regime TWo where the 
amplitude B is very close to 0. Of course, we have the symmetric regime TW1 where 
A is very close to 0 and which cannot be obtained with (69) because the change of 
variable (67) is singular at A -- 0. In fact, we intend to make extensive use of the 
symmetry $ so that it is sufficient in most of the analysis to study the region where 
[BI -< I/I. On (69), this means that we study the interior region of the cone [B'] = r.  

Let us consider the unstable manifold of the point (r~, B~) in N x C for the system 
(69). We know that it is two-dimensional, because there are two (complex-conjugate) 
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eigenvalues with positive real part (br - cr)r 2 + h .o . t ,  for the linearized operator. 
Moreover, we know the form of  this manifold when R ------- 0 because it is the two- 
dimensional surface obtained by rotating around the r-axis the part of  the heteroclinic 
curve in the (r, ]B' I) plane such that r > [B'I (see this in the (r0, r l )  plane in Fig. 5). 
The intersection of  this surface with the cone IB'[ = r is a circle centered on the r- 
axis (see Fig. 6). Now, the perturbed situation of  system (69) gives a two-dimensional 
unstable manifold close to the unperturbed axisymmetric one. This unstable manifold 
again intersects the cone ]B' I = r along a closed curve Co that can be parameterized 
by r = ~(0), B '  = ~(O)e i~ (see Fig. 6). This means that, for any 0 E ~,  we can find 
a solution (ro(x),  B~(x))  of (69) for x E ( - %  0] tending to (r~, B~) when x --> - ~  
and such that (ro(O), B~(0)) = (?(0), ~(O)ei~ The idea is now to connect one of  
these solutions with a symmetric one that approaches the symmetric traveling waves 
TW1 when x ---> + ~ .  For this, we need to recover the fourth dimension. For the 
system (68) we now have a family of  solutions (Ao,4~(x), Bo,r for x E ( - w ,  0] 
defined by 

Ao,4)(x ) = r o(x )ei[kcx +Oo(x)+r 
Bo,r ) = B~(x )e i[kcx +q'~ (73) 

where ~bo(x) - fi~x ---> 0 as x --> - ~ ,  and the arbitrariness of the phase t h comes 
from the rotational invariance of  (68). At x = 0, we have by construction 

Ao,r = ~(O)e/[0~176162 
B0,r = ~(O)e i[~'~176176 (74) 

Let us now apply the symmetry S. We then obtain the following family of  solutions 
for (68) on the interval [0, + ~ )  

(Ao,,4/(x), Bo,,r = (Bo, ,r  Ao, ,r  (75) 

These solutions all approach the traveling waves TW1 when x ---> + ~ .  To prove the 
existence of  defect solutions, it remains to show that, for x = 0, there are 0, r  0',  r  
such that 

Ao,r = Bo,,r Bo,r = Ao,,4~,(O). 

r 

(r~, B~ ) 

/ # cone IB'l = r 

Normal form situation Full system situation 

Fig. 6. Unstable manifold of the traveling waves TWo 
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This equation gives rise to 

0 = - 0 '  mod 27r, ?(0) = ~ ( -0 ) ,  q 6 -  r  = 0 + 0 0 ( 0 ) -  0-o(0) .  (76) 

We then have to consider the solutions of  ?(0) = ? ( - 0 )  with a periodic function ?. 
There are at least two solutions: 0 and 7r (there could exist many more solutions). 
Finally, we obtain two families of solutions connecting the traveling waves TWo with 
TW1 corresponding to q5 - ~b ~ = 0 or 7r. These solutions are two-parameter families 
since we can shift time and space, and we notice that the parameter ~b, which is free 
here, corresponds to time shifts. Let us sum up this result as the following theorem. 

Theorem 6. For a system (1) invariant under reflection symmetry and undergoing an 
oscillatory instability, let us consider the situation for [Ux] = O, and the generic case 
where Ar br < O. Then there are two symmetric traveling waves which are space- and 
time-periodic. Moreover, if ) t r ( b  r - Cr)  > O, then there exist at least two different 
time-periodic solutions (defects) connecting these two symmetric regimes, both with 
the same (shifted in time by half of the period)flow at infinity. 

Remark. It seems that these defect solutions are currently observed in the Couette- 
Taylor flow between concentric counter-rotating cylinders, but we have no way to 
make a physical distinction among all the possible defects. 

Concerning the persistence of  other connections joining TWo with TW1 when 
Arbr < O, Ar(br - Cr) < O, we obtain, by the same method as above, two symmetric 
segments on the diagonals of  the (IAI, Re B' )  plane. These segments are common 
to solutions defined on ( - ~ ,  0] starting from TWo at -~oo, with symmetric solutions 
defined on [0, + ~ )  ending at TW1 for x = +co. Thus, all of  these connections persist 
for the full vector field (dimension of (un)stable manifold is 4). 

Now let us examine the eventual persistence of  solutions joining 0 with TWo or 
TW1. In the case when TWo is a saddle in the (r0, r l )  plane, the stable manifold 
of TWo is one-dimensional in the (r, B ' )  space, but the representation is singular 
near 0. However, the origin is still a fixed point and has a two-dimensional unstable 
manifold; so, factoring out the phase of  A, one obtains only a one-dimensional unstable 
manifold in the three-dimensional (r, B ' )  space. Thus, in this case there is, in general, 
no persistence of  the heteroclinic solution starting from 0 and arriving at TWo (the 
result is the same for the symmetric solution). In the case when TWo is a node in the 
(r0, r l)  plane, there is indeed persistence of the solution connecting 0 with TWo, and 
the same holds for the symmetric solution. One could now ask whether there might 
exist a solution homoclinic to 0 when TWo is a saddle. Working as above, and starting 
on the unstable manifold of  0 at - ~ ,  one arrives in a neighborhood of  TWo. We may 
now factor out the phase of  A; hence, one has only one point on any section IAI < r0. 
Then the trajectory escapes from this neighborhood, first staying close to the stable 
manifold of  TWo and then staying close to the unstable two-dimensional one in the 
(r, B ' )  space. The intersection with the cone r = IB'I gives one point, where B '  is 
not necessarily real > 0. Shifting time allows us to move both phases of  A and B 
identically, so looking at the symmetric solution for x E [0, +~) ,  we see that it is not 
possible in general to fit both solutions at x = 0. So there is in general no solution 
homoclinic to O. 
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6.3 Persistence of Standing Waves 

We want to prove the existence of standing waves for the full system (68) in the case 
of  Ar(br § Cr) < O. For this, the change of variables (54) is the most relevant. In 
fact, we are looking for a spatially periodic solution invariant under the symmetry S, 
i.e., one that satisfies A(x)  = B ( - x ) ,  x E I~. Let us assume that we have a periodic 
solution of the following system on N • S 1 

f dr = rPr(iX ' to, r 2, ?2) § Rr(IX, to, r, ?e -2ikcx+i[~-O], r, ?e2ikcx-i[(O-O]), 

dd_~x = pi(tz, to, r 2, ?2) § !Ri ( ix  ' to, r, ? e -2ikcx +i[~-Ol, r, ? e2ik~x-i[~/-O]), 
F 

(77) 

where we denote by definition j~(x) -= f ( - x ) ;  then we obtain a periodic solution of 
(68), invariant under $ ,  in taking ro(x) = r l ( - x )  = r(x)  and 00(x) = - 0 1 ( - x )  = 
~b(x). Let 27r/k be the unknown period close to 27r/k~; then, introducing/3 = k - k~, 
we know that when R -= 0, there is a solution r(x)  = rl,  q~ = 0,/3 = /31 = 

2 2 Pi(IX, to, r 2, r 2) where r l  is the solution of Pr(/z, to, r l ,  r l )  = 0. Let us change the 
scale to adapt the period to 2~r/kc and change the phase as follows 

' 0' x = xk/kc,  = 0 + kc(x - x'), (78) 

where we can assume that 0 '  has a zero average. Then we are looking for (/3, r, ~b') 
in N • CI(S 1, ~) • Cd(S 1, ~), where CI(S 1, ~) is the space of C 1 27r/kc-periodic 
functions and Co 1 means of "zero mean value." Now we have to solve the following 
equations in (/3, r, O') 

f dr 

(1 + fl/kc) dx---7 

(1 +/3/kc)dd-dd~-7~,x , 

= rPr(tX ' to, r 2, ?2) 
§ Rr(t~, to, r, ? e -2ikCx'+i[~'-~'], r, ? e2ikcx'-i[(O'-~']), 

= p i ( t l~  ' to ,  r 2, ? 2 )  _ /3  

1 ^ ^ § -Ri ( t z ,  to, r, ?e -2ikcx'+i[q/-o'], r, ?eZikcx'-i[q/-q/]), 
F 

(79) 

which are solvable by using the implicit function theorem. In fact, the differential at 
(/3, r, 0 ' )  = (/31, r l ,  0) of  (79) (which is, in fact, a smooth map from • • C 1(S 1, ~)  x 
CI(s  1, JR) into [C~ 1, ~)]2) has the form 

(6/3, 6r, 60')  --~ 

(1 +/31/kc)dd-fi-~ - (2brr 2 - h .o . t . )6r  - (2Crr 2 + h.o. t . )6?,  

(1 + fll/kc) U + 6/3 - (2birl + h .o . t . )6r  (80) 

-- (2cir~ + h.o. t . )6?,  

2 ~  0 (the most dangerous eigenvalues are and is of  bounded inverse for b E - c r 
---2r 2 ~ r  2 - c 2 bearing on the averages of 6r  and 6?). It follows, using the fact 
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that R = O[(r + ?)N], that for N --> 4 there exists a unique solution of (79) in 
x C I ( s  1, ~) x C~(S 1, ~), and that we have more precisely 

ro(x) = r l ( - X )  = rl  + C(rlN-2), Oo(x) -'= - -~ t l ( - -X)  = C(rlN-I), 

/3 = /31 + G(rN-1)- (81) 

We have then obtained the standing wave solutions defined up to phase shifts in space 
and time, as they are classically (see Chossat and Iooss 1985). 

6.4 Persistence of  Separatrices Connecting Traveling Waves and Standing Waves 

The case we are investigating occurs only when Arbr < 0, br 2 - c 2 > 0, and it is 
physically relevant whenever the standing wave regime is dynamically stable with 
respect to spatially periodic perturbations (e lAr  < 0). Let us concentrate on the 
persistence of  the separatrix in Fig. 5 that connects the standing waves ST  at -oz  to 
TWo at + ~ .  For this we use again variables (r, B ' )  defined by (67). The ST  solution 
can now be expressed as 

^ 

r = ro(x), B' = rO(--x)e  -2ikx+i[O'-O'], (82) 

whose graph is a closed curve near the circle 

r = rl, B' = r le  -2iklx, x E ~. (83) 

For the normal form system (R --= 0), the unstable manifold of  S T is two-dimensional 
in the space (r, B ' )  and goes to the fixed point representing TWo at +oz. For the 
linearization around the periodic solution (82) of  the perturbed system (69), there are 
Floquet multipliers 1, and two others on each side of  1; hence, the unstable manifold 
is still two-dimensional close to the unstable manifold of  the unperturbed situation. 
Now TWo is an attracting node in the (r, B ' )  space; hence, it is clear by standard 
arguments that the above unstable manifold connects TWo at +oz. It then results 
in the existence in the four-dimensional system (68) of  a two-parameter family of 
solutions connecting ST  with TWo (shifts in space and on the phase th equivalent to a 
time shift). Coming back to the Navier-Stokes equations, let us sum up these results 
as the following theorem. 

Theorem 7. For a system (1) invariant under reflection symmetry and undergoing 
an oscillatory instability, let us consider the situation for [Ux] = 0, and the generic 
case where Ar(br + Cr) < O; then there exists a standing wave regime solution of the 
Navier-Stokes equations that is both time- and space-periodic. Moreover, if )trbr < 0 
and b2r - c~ > O, there is a family of solutions connecting these standing waves at -oz 
to the traveling waves TWo at +co, and there exists the symmetric family of  solutions 
connecting the traveling waves TW1 at -oz to the standing waves at +oz. 

Remark. Notice that the inequalities in the theorem give "good" values of tz and to 
(via Ar) where the mentioned solutions exist. When we are very close to the neutral 
curve Ar = 0, all these solutions (as well as those of  previous theorems) are very 
close to the basic solution V (~ 
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7. Spatially Quasi-Periodic Solutions 

In this section we show that most of the quasi-periodic solutions, that exist for the 
normal form (52), still exist when we, consider the full system (68) and the Navier- 
Stokes equations. We do not give the full proof here because it is analogous to the one 
made by Iooss and Los (1989). Reducing the proof to the four-dimensional system 
(68) is not enough because we need C ~ regularity for the proof, and, in general, 
this regularity is lost by the center manifold reduction. However, we first study the 
reduced four-dimensional problem here for the simplicity of the presentation, assuming 
the vector field (68) to be C a, and afterward we give ,a sketch of the argument for 
the full, infinite-dimensional problem. 

Considering the vector field (52) in ~4, we can introduce new coordinates adapted 
to the family of periodic solutions in the (r0, r l)  plane occurring for Ar(br + Cr) < 

2 2 O, c r - b r > 0. Let us denote by K the distance between the standing wave solution 
(rD rl) given by (58) and the intersection (the farthest from 0) of the closed trajectory 
with the diagonal r0 = ra. Let us define an angle 0o = 2~x/H, where H is the 
period H(Ix, w, K) of to(x) and rl(x). The unique solution of (55) such that r0(0) = 
r l ( 0 )  = r l  + K/~/2 may be written as to(X) = r l ( - x )  = r(Oo, K), and we can 
define new coordinates in the plane by 

ro = r(Oo, K), rl = r(-Oo, K). (84) 

Now, the system (55), (56) takes the form 

= 0, ~ -- g2(/x, o), K), 

= /3(/x, w, K) + qo(/X, o9, K, 0o), (85) 

dd-~xl = /3(/z, o9, K) + qo(/X, w, K, -0o),  

where q0 has a zero mean value in averaging on 00, O(/z, w, K) = 27r/H, and/3 is 
defined in (66). Now, reversibility is expressed by the anticommutativity of the vector 
field (85) with the transformation (K, 00, ~bo, ~1) ---> (K, -00,  -4'1, -q'o). Let us now 
consider the full four-dimensional system (68) with variables (K, 0o, 01, 4}), where 01 
and 4} are defined starting from (54) by the following relations 

k c x _}_ i[to 1 t 1 t = ~ ( o  - ~(0 "[- (O), k c x  q- Ill 1 = ~9), 

(86) 
01 = 0' H fOo[q0(/~, o9, K, s) + qo(IX, co, K, -s)]ds.  

We then obtain a system of the form 

f dK = R(ix ,w, K, 0o, 01), -d--Y- 
~ x  = g2(/x, w, K) + O(~,  o9, K, 0o, 01), 

(87) 
--~x = 2[kc +/3(/x, o9, K)] + dp(/x, w, K, 0o, 01), 

~ x  = G(/x, w, K, 0o, 01),  
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where the reversibility is expressed by the fact that O and  9 are even in (0o, 01), 
while R and G are odd in (00, 01). Moreover, we have the estimates 

(88) 
= O([Ar]), OK = G(IAr]). 

The phase ~b is uncoupled from the three first equations because of the rotational 
invariance of the system (68) on the center manifold. It is then clear for (87) that if 
one obtains a quasi-periodic solution of the system (87a-c) of the form of an even 
function K(Oo, 01), with 00 and 01 quasi-periodic in x, then (87d) yields ~b(x) explicitly 
and does not add any new frequency. The three-dimensional system in (K, 0o, 01) is 
analogous to the four-dimensional one studied in Sects. 7 and 8 of  Iooss and Los 
(1989). If  we add the to component (then constant) to the "radial part" K, we have 
the same four-dimensional problem for the existence of quasi-periodic solutions near 
an initial solution found on the normal form as in Iooss and Los (1989). It is then 
necessary to look for the allowed regions A(/~) in the parameter plane (to, K)  (for 
fixed /x), where quasi-periodic solutions are found on the normal form. We indicate 
in Fig. 7 these regions A(/x) that are easy to compute on the truncated cubic vector 
field. We denoted by 

Ko = 1 -  ~/ ~r ~-~r / and 6o = V e2r 

the coefficients giving the principal part of the limiting curves. The results are given 
in the following lemma. 

K 84 

h (.D-- - - L 0  0 
o 

0 < e  lbr< elCr 
supercritical bifurcation 

~"~-,.,~0"~ I K . -,~ 

OI o ~ - %  
~t<0 

e 1Cr< e 1 br< 0 
subcritical bifurcation subcritical bifurcation 

K 

o' ao.k/'~ o' 2"o~ ~ p.>o 
e l b < 0 ,  e l ( b r + c r ) > 0  
supercritical bifurcation 

c o - %  0 ~ m - CO 0 
~ < 0  

elbr > 0, e l (b+  Cr) < 0 
subcritical bifurcation subcritical bifurcation 

Fig. 7. Regions A(/z) (hatched) in the parameter space (to, K) where quasi-periodic 
solutions are found 
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Lemma 8. Let R, O, (I) be of  class C ~ in variables (IX, o9, K ,  0o, 01) in a neighbor- 
hood of  (0, o90, 0, q[2), and let N >- 4 in (88). Let a be any diophantine number such 
that, for  a given I x, there exists (~,  K)  E A(IX) satisfying 

Og = 
I~(IX, ~, K) 

m 

2[kc +/3(IX, ~,  K)] 

Og~ 0~2 ~,g 
and 0o) OK 

Ow OK 

~ 0 .  

m 

Then, for  any (o9, K)  on a local curve [o)(v), K(v)] in A(IX) close to (~, K),  the system 
(87a-c) admits a quasi-periodic solution K = Ko + Z(Oo, 01). For this solution Z is 
even and o f  class C ~, and there exists an odd C ~ diffeomorphism h v of -[2  and a 
constant Yv close to 2[kc + ~(IX, w, K)] satisfying (linear flow) 

dO; dO{ 
(0o, 01) = hv(O~, O' 1 ) w i t h ~  = yva,  dx  - Yr. 

We refer the reader to Iooss and Los (1989) for details of the proof of this lemma. The 
basic tool is an application of the implicit function theorem in Fr6chet spaces in the 
version of Hamilton (1982). The trick used, which is classical since Moser (1967), 
consists in adding a suitable shift in the rotation of the vector field to make the flow 
on the toms conjugated to a linear flow. 

Now, for the full infinite-dimensional problem, we might proceed by adapting the 
result of Pluschke (1990), who has the analogue of the Hamilton theorem in assum- 
ing only C k regularity. It would then be possible to work on the four-dimensional 
system (68), which indeed has this regularity (for any fixed k, the center manifold 
is C k in a k-dependent neighborhood of the origin). However, to keep the C ~ reg- 
ularity, let us proceed as in Sect. 9 of Iooss and Los (1989) in making a direct 
normalization without using center manifold theory. The Green's function defined in 
(21) for the hyperbolic part of the linear operator is the main tool used there to 
put the system into a "quasi-normal" form after a polynomial change of variables. 
Let us then choose the coordinates (K, 00, 01, ~b) in the central space, and t91 = 

a IArI(N-2)/4T~/2192 in the hyperbolic space ~ ,0 , .  We can then write the system in the 
following form 

- • - x  = R(IX, o9, K ,  0o, 01,192), 

-~x = I~(IX, o2, K)  + O(IX, w, K ,  0o, 01,192), 

- ~ x  = 2[kc + ]3(IX, o2, K)] + qb(ix, w, K, 0o, 01,192), 

dd-~x = G(IX, co, K, 0o, 01,192), 

d 1 9 2  = ~{1 ~0192 --l- ~(IX, (.0, K, 00, 01,192), 

(89) 
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where | and qb are even in (0o, 01), and R and G are odd in (0o, 01). Moreover, we 
have the estimates 

]R[ + + Iol = G(IArlP), ~ : ~(1119211 [Ar[ 1/2 + I~r[P), P = N/4,  
(90) 

and ~ satisfies the reversibility condition 

S~(IX, o2, K, 0o, 01,192) : --~(IX, O9, K, -0o ,  --018192). 

We notice that the four equations in K,  0o, 01,  192 are uncoupled from the last one in 
4); this is due to our factorization of time shift action. Now, taking N > 4, the proof 
made in Iooss and Los (1989) applies exactly to the system in K,  00, 01, t92, and we 
conclude for the angular part ~b as above for system (87). 

We conclude by stating the following theorem. 

Theorem 9. For a system (1) invariant under reflection symmetry, with a smooth 
basic solution undergoing an oscillatory instability, let us consider the situation for  
[Ux ] = O, and the generic cases where either 0 < e lbr  < e lCr, or e lCr < e lbr  < O, 
or e l b r < O, e i ( b r + C r ) > O, or e l b r > O, e I ( b r + C r ) ( O. Let a be any diophantine 
number such that, f o r  a given IX, there exists (-~, K)  E A(IX) satisfying 

m 

f2(ix, WK) 
a = - -  and 

2[kc + ~(IX, ~ ,  K)] 

312 Of~ ~,~ 
0o2 OK 

3o9 OK 

~ 0 .  

Then, f o r  any (o9, K)  on a curve [o9(v), K(u)]  in A(I.t ) close to (~, K) ,  the system (1) 
admits a spatially quasi-periodic solution, periodic in time o f  period 2r o f  class 
C ~ in the x variable, and such that properties mentioned in Lemma 8 hold. 

Remark. This theorem means that in the hatched regions of  Fig. 7, there persists a 
family of spatially quasi-periodic, time-periodic solutions of  (1) locally parameterized 
by the product o f  a line and a one-dimensional Cantor set. 
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Appendix: Discussion of the Resolvent 

In this section we provide the necessary tools for applying the center manifold theory 
in Sect. 2. For notational simplicity we assume p = o9 = 1, because it is obvious 
that the whole analysis holds equally well for any positive ~, and o9. 
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The main aid is the following result on the linear Stokes problem with nonzero 
divergence. 

Theorem A.1. Let Q be a smooth bounded domain in [R n, n >-- 2. Then the Stokes 
problem 

d13 _ A13 + Vp = j~, - d iv  13 = 
d~- 

13 = 0 onS  I •  

i nS  1 •  
(91) 

has for each f E (~0,o), and ~ ~ ~1,-1 fq ~o,1 with fa ~(r, .)dx = O for r E S 1, 
a unique solution (13,p) with 13 E (~1,0 f3 ~0,2)~,p E ~0,1, and IQD(T, .)dx = O. 

Proof. For ~ --= 0 this is a classical result, which is proved for instance in T6mam 
(1977), Ch. III.1 Thm.l .1.  Although only the initial value problem is treated, it is 
obvious that the result also holds for the time-periodic case. 

To deal with ~ ~ 0 we may assume f ~- 0 by linearity. From T6mam (1977), pp. 
31-34, we know that the steady problem 

- A U  + Vp = f ,  - d iv  U = g in Q, 
(92) 

U = 0 on OQ, 

has for each ( f ,  g) ~ Lz(Q) n • Hi(Q)  a unique solution (U,p) = (U(f,g),p(f,g)) 
O 

E [HZ(Q) 71 Hi(Q)] n • Hi(Q),  where IQ gdx  = fQpdX = 0. Because of the defi- 
nition of H - I ( Q )  in (10), (U, p) = (U(0,g), P(o,g)) satisfies the relation 

II( U, P)llL:(Q), x/i-~(Q) = sup ~ { U .  h + pk}dx.  
II(h,~)ll~=(Q), • 1 ~Q 

O 

Letting (v, q) = (V(h,k), q(h,k)) E [He(Q) N Hi(Q)] ~ • HI(Q) implies 

II(u, P)IIL~(Q)~215 = sup f { U . ( - A v  + Vq) + p ( - d i v  v)} dx 
-+- JQ 

= s u p ( { ( - A U  + Vp).v + ( - d iv  U)q}dx  
+ JQ (93) 

= s u p / { 0 . v  + g q } d x  
t .  

JQ 

--< supllgllH-l(Q)llq(h,k)llH~(Q) <- CIIglIH I(Q). 

Hence, the result for (92) and the estimate (93) imply that # = U(o,~(%)) E [~ l ,~  
7t~176 and t = p(o,g(,,.)) ~ 7~~ whenever ~ E ~1,-1 fq ~o,1. Setting (U,p) = (9 + 
w, 0 + ?), we find that (U, p) is a solution of (91) whenever (% q) solves (91) with 
the right-hand side @, ~) = (-(d/dr)Cv,  0). But # E ~1,o implies j~ E (~o,0), and, 
hence, using the result for the case ~, = 0, we obtain (13, p) E (~1,o rq ~o,2), x ~o,1, 
as was desired. 
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The uniqueness follows immediately when considering (91) with ( f ,  g) = (0,0). 
Multiplication of  Ut - AU + Vp = 0 with U and integration over S 1 x Q results in 
0 ----- f S I x Q ( U . U  t - - / ~ U . U  @-U.Vp)dxd~" = f s1x  Q I V U ] 2 d x d z .  Hence, U - 0 and 
p = a&) .  [] 

As is done in Iooss, Mielke, and Demay (1989) for the steady case, we may replace 
Q by a cylinder N x f l  and consider functions of  the form ff(z, x ,  y) = eisxf('r, y) 
where (~-, y) E S 1 x 12. Using the notations as in Sect. 2 we obtain the following 
lemma. 

L e m m a  A.2. Let s E ~ and s # O. Then the problem 

0 
" u - U x  --  A • U x "[- s 2 U x  -1- i sp  = f x, 
ct 'r 

0 
~--~TUL -- ALU• q- s2U• q- V• = f •  (94) 

isUx + V•177 = g  in S 1 x 12, 

U = 0  on S l x ~12, 

has for each f E (~0,0)3 and g E ~1,-1 A g~o,1 a unique solution (U,p)  ~ (~1,0 71 
~0,2)3 x 0~ ~~ . Moreover, for each so > 0 there is a constant C = Cso such that, for 
all s with Is[ >- so and all (f,g), 

IIUIIl,o + IIUIIo,~ + [[pllo,1 + [sl(llu~lli,-~ + IIUllo,1 + I[pllo,o) + s~llWllo,o 

<- c(l[fl[o,o + IIgll,,-, + I[gllo,, + Isl [[gll0,o) (95) 

holds, where II.llk,m -- [I.II~o. 

Proof. Letting fc('c, x ,  y) = ei'Xf('r, y) and similarly for g, U, and p, we obtain, 
from Theorem A. 1, the solvability of  (94) and the a priori estimate 

I[UIIl,o + IlUllo,2 + Ilp[Io,~ + Isl(lluIk~ + Ilpllo,o) + s~llUllo,o 

-< c(llfJ[I,,o + IIfJ[Io,2 + INo,1) 

-< c(ll~ll0,0 + I[~lk-1 + Ilg'llo,1), 
where II~llk,m = IIfJll~k(sv,~(to,h(,)]• with h(s)  being such that e ish(s) = 1 and 
h(s) ~ [27r, 47r) [cf. Iooss, Mielke, and Demay (1989), Appendix 2]. 

Note that for ? = (d/dT)~ = ei '~r with r = (d/d'r)g the estimate 

Io'Io I17(~, .)llH-'([o,h]• ----- sup e'~Xr(~ ", y )v(x ,  y ) d y d x  
Ilvll.l(m,h]• a)= 1 

-- C sup ( r & ,  y )w(y )dy  < cIIrll 
s=llwl[~2m) +llwll~xm) = 1 J o n -1(,0) 
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holds. Hence, I1~111,-1 ~ CIIgll i , -1.  O n  the other  hand, I1~110,~ ~ Is[ Ilgll0,0 + I[gll0,1, 
which brings up the s in the right-hand side of  (95). 

It remains to estimate IIUxlll,-1. Therefore, we use the divergence equation, which 
gives Ux = (g - Vi .U•  The theorem follows from the established estimates 
for U•  [] 

To prove the resolvent estimates (17) and (18) in Theorem 2 it is sufficient to show 
the same estimates for 7~, because the projection 9~ : ~ ~ ~g is bounded. 

Theorem A.3. There is a positive 8 such that the resolvent (~  - )t) -1 " ~ ~ D ( ~ )  
exists for large enough A ~ C~ : =  {h E C) : IRehl - ~(1 + [ImAI)} and satisfies 

IlO~ - A)-l l l~<~,~) = ~ ( 1 ) ,  (96) 

(97) 

for [A] ----> ~ and A E C~. 

Remark. The estimate (18) now follows by interpolation (Lions and Magenes 1968). 
From (97) we obtain I10~ - A)-lll~<%~o~)) = ~(1). Hence, 

[[(7s A)-ll[~e(%D(UO)) C11(7~ h)-l[[~~163 - 1 0  ([A[~_o) -< - - A) II~(%~(x)) = ~ 

Proof of Theorem A.3: The resolvent equation ( ~  + % + ~ - h)(~v ) = (~) will be 
reduced to (94), where s = Imh and o- = Reh. We eliminate W by using 

Wx = - p ,  W•  = G• + A U •  

V•177  = V•177  - hGx - h2Ux . 
(98) 

Thus, (U, p)  has to satisfy 

3 
- - U x  - A •  U x  -}- s 2 U x  -'}- isp = Mx x(U,p)  + fx,z,  
c97" 

c9  
~ - U •  - A L U L  -{- S2UL q- V• = M• A(U,p) + f• (99) 07" 

isUx + V•177 = M d i v , A ( U , p )  + g in S 1 • 12, 

U = 0 o n S  1 xO12, 
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(o,o, Y~(U), Y• w• = 

i x ,  A -= 

M• = 

f x , A  = 

f L , A  = 

Mdiv ,  X = 

37(U, W), 

(2is~r + o'2)Ux - o'p - ~x(U), 

(2• + gZ)u• - 57• AUk), 

Fx + hGx - V•177 

F• + AG• - ~•  G• 

- o ' U x ,  g = - G x .  

series 

According to Lemma A.2 the operator defined by the left-hand side of (99) is 
invertible for Is[ -> 1; let us denote its inverse by R~. Now (99) is equivalent to 

(U,p) = RsMa(U,p)  + Rs(fA, g). (100) 

We consider this equation on the space 

Y = {(U,p) : Ux E ~1,-1 f-i ~0,1, U • E ~o, l ,p  E ~o,o} 

equipped with the s-dependent norm I].[[~ given by 

2 2 2 tl(U,p)[I 2 := s IlUIIo,o + tlUIIo,1 § IlVxl[(-1 § I~11o(o. (101) 

From (G, F) E ~, from the definition of (fA, g) in (100), and from the estimate (95) 
we obtain 

IIR~(fA, g)lls -< ]-~(llfa][o,o + Ilg[[o,, + I]g]]l,-i + ]sI Ilgllo,o) 
(102) 

-< i~l(llFl[o,o + IIGIIo,1 + (Isl + [~l)llGIIo,o + IlGxll~,-~). 

1, then (99) has a unique solution (U, p) given by the Neumann 

(U,p) = ~ ( R , M A ) k R ~ ( f a ,  g) (103) 
k = O  

and satisfying the estimate 

I](U,p)[ls -< (1 - IlRsMaH~(y,y))-lllRs(f.~, g)lls. (104) 
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From now on we assume I~1 -< ~(1 + Isl) with ~ ~ (o,1) and Isl -> 1, Then 
IIR~M~(U, P)II~ can be estimated as follows 

IIR~MA(U, p)lls -< ~([[Mx,AHo,o + IlM~,~llo,o 

+ [IMdiv,xl[1,-1 + IlMd~v,xll0,1 + Isl IlMdiv,xllo,o) 

-< ~ ( ( l i s o l  + ,~bllUIIo,o + I,~l Ilello,o + (I,,I + Isl)llUIIo,o 

+ [IUl[o,~ + Iol(llu~ll~,-1 + IIu~llo,~ + Jsl IIuxllo,o)) 

- ~ c  + ~  U,p)ll, .  

Hence, taking Isl ~ 3 c  and 6 -< 1/(3C) yields a region where (100) is solvable. 
As IIR~M~II ~ ~ in this region, the combination of (102), (103), (104), and (98) yields 

I1(~ + ~ + ~e - ~ ) - 1 ( ~ )  I1+ -- I,(u, w)ll~ 

= I[(Ux, u•  - p ,  G• + AU~)II~ 
= [IUxlll,-~ + IIUIIo,1 + Ilpll0,0 + IAI IIu~llo,o + IIG~llo,o 

-< I~I(II(G, F)II~ + Isl IIGIIo,o). 

This  proves (96) and (97). [] 

It remains to be shown that the spectrum of ffs = 9~7s ) behaves sufficiently 
well in a neighborhood of the imaginary axis. To handle the difficulties arising from 
the bad smoothness properties of the pressure and the divergence with respect to z, 
we decompose the time-periodic functions into their Fourier components. 

(GF)= ~'(gn)einr. n~Z \fn (105) 

As the original problem is autonomous, the operator if( acts componentwise, implying 
that the resolvent problem (fig - A)(U, W) = (G, F) is equivalent to 

(106) 

It turns out that each K n has a compact resolvent. Together with appropriate estimates 
we obtain the following theorem. 
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T h e o r e m  A.4. There is a positive e such that the resolvent (ffs - 3.)-1 : ~ __~ D(ffs 
exists for  all 3. with IRe3.1  = ~. Moreover, inside the strip IRe3.1 < ~ the operator ffs 
has only finitely many eigenvalues, each having only a finite-dimensional generalized 
eigenspace. 

Proof. We define the operators K~ : D(Kn) ~ Xn by 

o o 

Xn = Q H I ( O )  x H i ( O )  2 z QL2(I2) • L2(Y~) 2, 

D(Kn) = {(u, w) E Xn'U ~ H2(g'~) 3, w E HI(~-~) 3, 73_ . u3_ = w3_ = 0 on c~f~}, 

K~ = in Ux - QA3_ux + V3_  9 w3_ + Q~x(U)  

in u3_ - A3_u3_ - V 3_ wx + ~ •  w3_) 

where Q is as in (13). With the real number s later on being equal to Im3., we 
introduce, for the space X . ,  the norm 1[.[1.,~ given by 

II(u, w)ll~.,s = (1 + n~)llu~ll~_l + s~llull0 ~ + Ilull~ + Ilwll~, 

where II. I1~ denotes the Hk(g2)-norm. This special choice is made in analogy to (101). 
For (U, W) = ~,nEZ(U~, Wn)e  inr w e  have 

II(u, w) l l~ :  -- II(u, w)ll~ + s211uIl~ -- 27r Z II(u., w 2 ~)lln,,. (107) 
n ~ Z  

Further on we specify the norm parameters by writing ~ and ~n,~, respectively. From 
(106) and the last relation we deduce 

I1(~ -1  2 -1  2 - = - 3.) II~xo, ,xo,>.  3.) I1~,,~,> 2 .  s u p  [ ] ( g  n (108) 
n E T /  ' ' 

From Theorem A.3 we know that (ffs - A) -1 : ~ ~ D(ff~) exists for all 3. with 
IRe3.1 < e and  IImAi >  89 for  some positive 6 and 5. Hence, (Kn - A) -1 : Xn 
D(Kn) exists for all n E 7/. Since D(Kn) is compactly embedded in Xn we find that 
each of the resolvents (K,  - A)-1 : Xn ---~ Xn is compact. To deal with the remaining 
rectangle R~,8 = {A E C " IRe3.l < e, IIm3.1 < 1), we use the following proposition. 

Proposi t ion A.5. There are positive numbers e, no, and C such that 

II(K. - -1  A) II~<x~ -< C,  (s = ImA), 

for  all A E C with IReal < ~ and all n ~ ~_ with Inl > no. 

(109) 

Before proving this proposition we finish the proof of Theorem A.4. Combin- 
ing (108) and (109), we have (ffs - A) -1 E ~ ( ~ s ,  ~s)  whenever all the values 
[[(gn - A)-llb<x~176 Inl - no, are finite. However,  this is valid in Re,8 except 
for a finite number of  points because of the compactness of  (Kn  - A ) - I .  [] 



Bifurcating Time-Periodic Solutions of Navier-Stokes Equations in Infinite Cylinders 143 

Proof of  Proposition A.5. It is sufficient to prove (109) for A = is,  s ~ ~,  because 
then the formula 

< 

(Kn - is  - ~r) -1 = [I - o'(Kn - i s ) - l ] - l ( K n  - is)  -1 (110) 

gives the desired result. Working with A = is only allows us to reduce the resolvent 
problem to Lemma A.2 or its analogue in the space of Fourier components with 
respect to ~-. 

With p = Wx and w• = g• + i su •  the resolvent equation (Kn - is)(u,  w) = 
(g, f )  is equivalent to 

~ 

Dn,s(u,p)  = (Ns(u) + fs ,  - g x ) ,  (111) 

where 

in ux - QA• ux + S2btx  - -  is p ~ 
D~,s(u, p) = i n  bt • - -  A L bt • -}- S2U L --  V • J ,  

iSUx + V • 1 7 7  / 

Ns(u) = - ~ •  is u• / 

_ {  V•177  ] 
ffs = f  + is g \ ~ •  g •  

Taking Fourier components in Lemma A.2 we immediately obtain that the lin- 
ear problem D,,~(v, q) = ~ ,  ~) has for each ~ ,  ~) E Lz(J2) 3 • H a ( o )  with 
f f fxdy = ~ ~dy  = 0 a unique solution (v, q) E (H2(2"~) f) HI($'~)) 3 • H I ( O )  with 
f vxdy  ~ q d y  = O. 

Although the case s = 0 is explicitly excluded in Lemma A.2 we realize that in 
the present context, after projecting out the mean values of Ux and p, the result still 
holds for s = 0. In particular the u~-equation decouples from the (u• p)-equation. 
The solvability of the ux-equation is obvious from the self-adjointedness of - Q A •  
and the (u • p)-equation can be solved with the aid of Theorem A. 1. 

For treating the perturbation N~(u), deriving from the convective terms, we first 
note that the pressure does not appear on the right-hand side in (111). Hence, de- 
noting the solution of Dn,s(V, q) = ( f ,  ~) by (v, q) = (Tn,s(f, g,),Rn,s~f, g)), (111) 
transforms into 

u = Tn,~(Ns(u), O) + Tn,s(f%, - g x ) ,  
(112) 

P = g n , s ( N s ( b l )  -}- f s ,  - - g x ) ,  

where p is decoupled. 
For (u ,p )  = (Tn,s~,  ~), Rn,~(f, ~)) we obtain from (95) the estimate 

InsllLuxll-l+(Inl + sZ)llull0 + + s211ull, + Ilul12 + lull• + ILoll, (113) 
-< c(llYllo + I,,I I1 11-, + I1 11o + I1 11,). 
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Furthermore, the special structure of  Ns(u) gives us llNs(u)[[0 ~ C(js [llul[o + ][ull~); 
and, using the norm II.ll~ -- s21l.l[~ + II~ll~, we obtain 

l + l s l  1 } 
IlTn,s(NAu),o)lls ~ max 1 + In{ + s 2' . j l  + Inl + s2 cllulls 

Thus, there is an no > 0 such that, for all n ~ 77 with In[ > no, the operator norm 
O O 

(with respect to [[.lid of  Tn,s(Ns(.), 0)" HI ( l ) )  ~ Ha( f l )  is less than 1. Hence, as in 
(103), we obtain the solvability of  (112). 

Moreover, for (Kn - is)(u, w) = (g, f),  In[ > no, by employing (113) once again, 
we have 

I1(., w)H.,s -< Inl II .A-1 + Isl Ilul[0 + Ilul[, + Ilwll0 

-< Inl Iluxll-1 + Isl Ilull0 + Ilulll + Ibllo + Ilg• + i su•  

--< i~1(11/+ i s g  - (V•177 ~e• g• + Inl Ilgxll-1 + Isl Ilgll0 + Ilgllx) 

--< clI(g, f)lln,s, 
which is the desired result. [] 

Example A.6 
Finally, we show that we cannot expect the spectrum of ff~ to be discrete or, more 
precisely, to have no finite points of  accumulation. Therefore, consider the two- 
dimensional problem Q = N x ( - 1 ,  1) with zero base flow V (~ --- 0 that implies 
2~(U, W) = 0. Then the eigenvalues can be calculated explicitly as follows. 

Let (U, V) = (Ux, U• E N2; then the eigenvalue equation for each of the Fourier 
components (u, v) = (un, vn), n E 77, is 

(in - , ~ 2 ) u  - u tt --[- h p  = O,  

(in - h 2 ) v  - v 't q - p  = O, 

h u + v ' = O  for y E ( - 1 ,  1); 

u = v = 0 f o r y  = -2-_1. 

(114) 

Here ' denotes d/dy. Using the ansatz (u, v, p)  = (a, b, c)e ~ry we find that (114), 
except for the boundary conditions, is satisfied through 

v = a - A s i n A y  ~ + / 3  iAcoshy  + 
p - i n cos Ay ] n sin Ay 

( ~ n -  A2 c~ t ' , / i~n- A2y ~ ( i ~ / i n - A 2 s i n h ~ t n - A 2 y )  
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where a . . . . .  6 E C. Inserting this into the boundary condition, we find nontrivial 
solutions whenever the determinant of  the arising 4 • 4 matrix B(n,  A) is zero. Using 
the odd-even structure of  the problem (corresponding to the reflectional symmetry 
y --~ - y )  the matrix consists of two 2 • 2 blocks, and an elementary calculation 
gives 

A ./'7----7z, ~ \ 
: A2(-ta~ A i t a n h x / t n - A ' ] ( A t a n A - i  ~ n t n -  A2tanh ~ ) .  detB(n,  A) / \ - -  

However, for all fixed h E C we have tanh ~ n -  h 2 ---> 1 for n E 72 and 
[nl --~ ~. Hence, for each hk = k~-, k r 0 (where tanhk = 0), we find a sequence 
Ak,n, n E 72, with A~,~ ~ Ak for In[ --~ oo such that the first factor in parentheses 
is zero. Similarly, the second factor in parentheses is zero for sequences ?tk,n with 
Ak,, -~  ~ + kzr. 

Fortunately the sequence tending to ho -- 0 is identical to zero (i.e., ho,, = 0 
for all n E 72), since both factors in parentheses are nonzero on an n-independent 
neighborhood of  0. However, for every n we have the eigenvalue h = 0 with the 
eigenfunction (u, v, p)  = (0,0,1), giving rise to the infinite-dimensional kernel. 
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