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Abstract

We consider travelling wave solutions on a one-dimensional lattice,
corresponding to mass particles interacting nonlinearly with their nearest
neighbor (Fermi-Pasta-Ulam model). A constructive method is given, for
obtaining all small bounded travelling waves for generic potentials, near
the first critical value of the velocity. They all are solutions of a finite di-

mensional reversible ODE. In particular, near (above) the first critical ve-
locity of the waves, we construct the solitary waves whose global existence
was proved by Friesecke et Wattis [1], using a variational approach. In
addition, we find other travelling waves like (i) superposition of a periodic
oscillation with a non zero averaged stretching or compression between
particules, (ii) mainly localized waves which tend to uniformly stretched
or compressed lattice at infinity, (iii) heteroclinic solutions connecting a
stretched pattern with a compressed one.

1 Introduction and Formulation of the problem

We consider the dynamics of the classical one-dimentional lattice given by

Ẍn = V ′(Xn+1 −Xn)− V ′(Xn −Xn−1), n ∈ Z (1)

where Xn(t̃), t̃ ∈ R, gives the position of the nth particle, V is the potential due
to nearest-neighbor interaction. We are interested in travelling waves solutions
of (1). The system (1) has a special physical importance, mainly due to its
apparent simplicity, and to the discovery from Fermi, Pasta, Ulam [1] about the
(numerically found) time behavior of solutions with sinusoidal initial condition,
having recurrence properties, meaning that it does not mix different modes, de-
spite of its a prori non integrability. Important results on its localized solutions
are given by Friesecke &Wattis in [2], using a variational approach. We refer
the reader to references in [2] for numerical results on localized waves in one
dimensional lattices. In the present work, we follow the lines of the method
initiated by Iooss and Kirchgässner [4] on a similar system. With the ansatz
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Xn(t̃) = x̃(nτ − t̃), after scaling the time as t̃ = τt, and denoting x(t) = x̃(τt),
system (1) is transformed to

ẍ(t) = τ2 (V ′[x(t + 1)− x(t)]− V ′[x(t)− x(t− 1)]) (2)

which is a scalar ”neutral” or ”advance-delay” differential equation. We refer to
the basic paper [4] for general references on advance-delay differential equations,
related to our type of problem (second order differential). However, we give
a constructive original method for obtaining the ”small” solutions of (2) for
velocities of the waves close to the first critical value (called the ”sound velocity”
in [2]). We show that they all belong to a finite dimensional center manifold, and
are given by the small bounded solutions of an ordinary differential equation.
This reduction result follows from the work [4] on a similar problem, which
was inspired by the analogous reduction available for elliptic systems in strips
(see the seminal work [6] of Kirchgässner ). We do not reproduce here the
complete proof of this reduction process, refering the reader to [4] for details.
The additional difficulty here is the invariance property of our system under
addition of a constant, which leads to a systematic double zero eigenvalue for
the linearized operator, for all values of the parameters (velocity of the waves,
curvature at 0 of the potential). We solve this difficulty and concentrate on the
extensive study of all types of small bounded solutions of (2). Our results are
summed up in 3 theorems, valid for generic potentials. The first one gives the
localized solutions, and is the result analogous to the one of theorem 1 in [2]. The
second theorem gives ”mainly localized” solutions, which are asymptotic to a
stretched or a compressed lattice (”stretched” means that Xn+1−Xn is enlarged,
”compressed” means the opposite). Depending on the local properties of the
potential, we also show the existence of an ”heteroclinic” solution connecting a
stretched lattice with a compressed one. The last theorem gives large families
of periodic solutions (ẋ(t) is time periodic), where the pattern has time periodic
oscillations around a stretched or a compressed uniform state (this averaged
state may be the basic uniform state (x = 0).

The reversibility symetry given by x(t) 7−→ −x(−t) plays a capital role in
what follows. An important remark is that this system is invariant under the
transformation x 7−→ x + q for any q ∈ R. Moreover we have to keep in mind
that there is a family of ”trivial” solutions given by x(t) = at + b for any a and
b in R. They correspond to uniformly stretched or compressed patterns in (1).

In what follows, we need to specify the behavior of V ′ near 0:

V ′(x) = αx + βx2 + γx3 + δx4 + ...,

the essential assumption being that

V ′′(0) = α > 0.

For obtaining non trivial results, we also need that, at least one of the higher
order coefficients of the Taylor expansion of V ′ at the origin is non zero. We
shall concentrate our analysis to the cases when β or γ are non zero.
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We are now ready to look at this system with the eyes of the work [4].
Instead of treating (2) directly, we introduce a new variable v ∈ [−1, 1]

and functions X(t, v) = x(t + v). The notation U(t)(v) = (x(t), ξ(t), X(t, v))T

indicates our intention to construct U as a map from R into some function space
living on the v-interval [−1, 1]. We use the notations ξ(t) = ẋ(t), δ1X(t, v) =
X(t, 1), and δ−1X(t, v) = X(t,−1). Equation (2) can now be written as follows

∂tU = LµU + Mτ (U), (3)

where µ = ατ2, and Lµ is the linear, nonlocal operator

Lµ =




0 1 0
−2µ 0 µ(δ1 + δ−1)

0 0 ∂v


 ,

and
Mτ (U) = τ2

(
0, g(δ1X − x)− g(x− δ−1X), 0

)T

where we define g(x) = V ′(x) − αx = O(x2) as x → 0. Moreover, we require
that X(t, 0) = x(t).

As in [4], we introduce Banach-spaces H and D for U(v) = (x, ξ, X(v))T

H = R2 ×
(
C0[−1, 1]

)

D =
{
U ∈ R2 × (C1[−1, 1])

/
X(0) = x

}

with the usual maximum norms. The operator Lµ then maps D into H con-
tinuously. The nonlinearity Mτ is supposed to satisfy Mτ ∈ Ck(D, D), k ≥ 1,
and

‖Mτ(U)‖D ≤ c(ρ)‖U‖2
D

for all U ∈ D with ‖U‖D ≤ ρ; ρ being an arbitrary positive constant. In our
particular case V ′ and g ∈ C2(Ω) suffices for the validity of the assumption on
Mτ ; Ω denotes an open neighborhood of 0 ∈ R.

The operator Lµ, acting in H with domain D, has a compact resolvent in H.
Moreover, Lµ and Mτ , both anticommute with the reflexion S in H, given by

S(x, ξ, X)T = (−x, ξ,−X ◦ s)T , (4)

where X ◦ s(v) = X(−v). Therefore, (3) is reversible.

2 The spectrum of Lµ and its resolvent

To determine the spectrum
∑ ≡ ∑

Lµ of Lµ, the resolvent equation

(λI − Lµ)U = F (5)

has to be solved for any given F = (f0, f1, F2)
T ∈ H, with λ ∈ C, and U =

(x, ξ, X)T ∈ D. This is possible provided that N(λ; µ) 6= 0, where

N(λ; µ) = −λ2 + 2µ(coshλ− 1). (6)
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Indeed, we obtain

x = −[N(λ; µ)]−1(λf0 + f1 + µf̃λ), (7)

ξ = −[N(λ; µ)]−1{[λ2 + N(λ; µ)]f0 + λf1 + µλf̃λ}, (8)

X(v) = eλvx−
∫ v

0

eλ(v−s)F2(s)ds, (9)

with

f̃λ =

∫ 1

0

[−eλ(1−s)F2(s) + e−λ(1−s)F2(−s)]ds.

Since N(λ; µ) is an entire function of λ for every µ ∈ R, the spectrum
∑

Lµ

consists of isolated eigenvalues λ. They are roots of N(λ; µ), and thus have
finite multiplicities.

Remark, that Lµ is real and that SLµ + LµS = 0 holds.
∑

Lµ is then
invariant under λ 7→ λ and λ 7→ −λ. Thus,

∑
Lµ is invariant under reflexion

on the real – and the imaginary axis in C. Thus, we can restrict the following
considerations to λ = p + iq with nonnegative p and q.

The central part
∑

0 ≡
∑

0 Lµ =
∑

Lµ ∩ iR of the spectrum is determined
by N(iq; µ) = 0, q ∈ R, i.e.

q2 + 2µ(cos q − 1) = 0. (10)

Using the same type of proof as in [4] (quite elementary here, with the function
q−2(1− cos q)), we have the following

Lemma 1 (i) For each µ > 0, there exists p0 > 0 , such that all λ ∈
∑

Lµ \
∑

0

satisfy |Reλ| ≥ p0.
(ii) Let λ = p + iq ∈ ∑

then

|q| ≤ 2
√

µ + 4e−2 cosh(p/2)

holds.
(iii) For 0 < µ < 1, 0 is the only eigenvalue on the imaginary axis. It

has multiplicity two. There are only two real eigenvalues ±λ , moreover these
eigenvalues tend towards 0 as µ → 1. For µ ≥ 1 the eigenvalue 0 is the only one
on the real axis.

(iv) For µ = 1, the eigenvalue 0 is quadruple, with a 4× 4 Jordan block.
(v) There is an increasing unbounded sequence µn, n = 0, 1, 2, ... of (critical)

values of the parameter µ (see figure 1), such that µ0 = 1 and for µ = µn, n >
1, there is one pair ±iqn of double non semi-simple imaginary eigenvalues in
addition to the double non semi-simple eigenvalue at 0, and 2n − 1 pairs of
simple imaginary eigenvalues ±iq′j , such that 0 < q′j < qn (see figure 1).

Since the bifurcations in system (2) will only occur when the cardinality
of

∑
0 Lµ changes, the first relevant case occurs for µ near 1, which means

that the velocity 1/τ of these bifurcating travelling waves is close to
√

V ′′(0).
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Figure 1: Position of eigenvalues of Lµ near the imaginary axis.

Using the center manifold reduction as in [4], we obtain in this simplest case
a 4-dimensional reversible ODE. Next bifurcation, for µ near µ1, leads to a 8-
dimensional reversible ODE, and so on. The reduction argument follows exactly
the same lines as in [4], so here we concentrate on the specific results on the
reduced ODE, in the simplest case (4-dim).

We now need to construct the projection P on the 4-dimensional subspace
of H, belonging to the quadruple eigenvalue 0 (µ = µ0 = 1), and which comutes
with Lµ0

. This projection is given by the Laurent expansion in L(H) of its
resolvent operator near λ = 0 (see [7])

(λI− Lµ0
)−1 =

D3

λ4
+

D2

λ3
+

D

λ2
+

P

λ
− L̃−1

µ0
− λL̃−2

µ0
− ... (11)

where P is the projection we are looking for, and D = Lµ0
P is nilpotent (D4 =

0), and L̃−1
µ0

is the pseudo-inverse of Lµ0
on the subspace (I − P )H. The 4-

dimensional subspace PH is spanned by the following vectors

ζ0 = (1, 0, 1)T ,

ζ1 = (0, 1, v)T ,

ζ2 = (0, 0, v2/2)T ,

ζ3 = (0, 0, v3/6)T ,

which satisfy

Lµ0
ζ0 = 0, Sζ0 = −ζ0,

Lµ0
ζ1 = ζ0, Sζ1 = ζ1,

Lµ0
ζ2 = ζ1, Sζ2 = −ζ2,

Lµ0
ζ3 = ζ2, Sζ3 = ζ3.

After elementary computations, we obtain the following expression for the pro-
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jection P :

PW = ((PW )x, (PW )ξ , (PW )X)
T

= (PW )xζ0 + (DW )xζ1 + (D2W )xζ2 + (D3W )xζ3,

(PW )x =
2

5

{
f0 −

∫ 1

0

[(1− s)− 5(1− s)3][F2(s) + F2(−s)]ds

}
,

(DW )x = (PW )ξ =
2

5

{
f1 −

∫ 1

0

[1− 15(1− s)2][F2(s)− F2(−s)]ds

}
,

(D2W )x = (DW )ξ = −12

{
f0 −

∫ 1

0

(1− s)[F2(s) + F2(−s)]ds

}
,

(D3W )x = (D2W )ξ = −12

{
f1 −

∫ 1

0

[F2(s)− F2(−s)]ds

}
.

where W = (f0, f1, F2)
T ∈ H. The expression for D follows now immediately

from its definition. In what follows, for sake of clarity, we denote by ζ∗j the
linear continuous forms on H given for any W ∈ H by

ζ∗0 (W ) = (PW )x,

ζ∗1 (W ) = (DW )x = ζ∗0 (Lµ0
W ),

ζ∗2 (W ) = (D2W )x,

ζ∗3 (W ) = (D3W )x

and we check easily that

ζ∗j (SW ) = (−1)j+1ζ∗j (W ),

ζ∗k (ζj) = δkj , k, j = 0, 1, 2, 3,

where δkj = 1 if k = j, and = 0 otherwise.

3 Reduced system

The system (3) is invariant under the following shift operator

τq : U 7−→ τqU = U + qζ0, ∀q ∈ R,

which corresponds to the invariance of (2) under x 7−→ x + q. Indeed, we check
easily that

Lµτq = Lµ, Mτ ◦ τq = Mτ .

It is then natural to decompose any U ∈ H as follows

U = W + qζ0, ζ∗0 (W ) = 0, (12)
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and we denote by H1 the codimension one subspace of H where W lies.We use
the similar definition for the subspace D1 of D. Noticing that ζ∗0 (0, f1, 0)T = 0,
the system (3) becomes

dq

dt
= ζ∗0 (Lµ0

W ) + 0 = ζ∗1 (W ), (13)

dW

dt
= L̂µW + Mτ (W ), (14)

where L̂µW = LµW − ζ∗1 (W )ζ0. The operator L̂µ0
as an operator acting in H1

has the same spectrum as Lµ0
except that 0 is now triple instead of quadruple.

Indeed we check that

L̂µ0
ζ1 = 0, L̂µ0

ζ2 = ζ1, L̂µ0
ζ3 = ζ2, ζ∗3 (L̂µ0

W ) = 0

holds. We now use the center manifold reduction on the system (14) in D1.
Applying a proof identical to the one given in [4], we know that the ”small”
solutions are contained in a center manifold which is as regular as V ′ in the
original system (2), of the form

W = Aζ1 + Bζ2 + Cζ3 + Φµ(A, B, C), (15)

where µ is near µ0 and (A, B, C) near 0, and Φ is regular and at least quadratic
in its set of arguments, taking values in D1, and such that Φ(0, 0, 0, µ) = 0. Now,
we observe that the linearized operator for µ = µ0, is a 3×3 Jordan block, with
0 on the diagonal, and we notice that the reversibility symmetry S reduced to
the 3-dimensional invariant subspace has the following representation

S0 : (A, B, C) 7−→ (A,−B, C).

It then results from normal form theory [see for instance [3] p.25 and p.31
(exercice I.18 for the reversible vector field)] that we can choose coordinates
A, B, C in choosing a suitable form for Φµ up to a certain order, such that for
any fixed p smaller than the degree of regularity of V ′, the system reads

dA

dt
= B, (16)

dB

dt
= C + Aφµ(A, B2 − 2AC) + RB(A, B2, C, µ), (17)

dC

dt
= Bφµ(A, B2 − 2AC) + BRC(A, B2, C, µ), (18)

where φµ is a polynomial in its arguments, of degree p in (A, B, C), and

|RB |+ |BRC | = O
{
(|A|+ |B|+ |C|)p+1

}
.

For the sake of completeness we add the equation for q

dq

dt
= A + ζ∗1 [Φµ(A, B, C)]. (19)
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In the appendix we compute the principal part of polynomial φµ

φµ(A, B2 − 2AC) = ν + aA + b(B2 − 2AC) + cA2 + ... (20)

ν = 6(1− µ) + O[(1− µ)2], (21)

a = −8τ2β[1 + O(ν)], (22)

and, if β = 0, and γ 6= 0

a = 0, b = (3/10)τ2γ[1 + O(ν)], c = −9τ2γ[1 + O(ν)]. (23)

In φµ we consider all coefficients (a, b, c, ..) as functions of ν instead of µ, for a
better comfort. A nice property of (16,17,18) is that if we suppress the higher
order terms RB , RC which are not in normal form, then this ”truncated” system
is integrable. Indeed, we have the two first integrals

B2 − 2AC = K,

C −Ψ(A, K, ν) = H,

where

Ψ(A, K, ν) =

∫ A

0

φµ(s, K)ds.

For (H, K) fixed, all trajectories in the (A, B, C) space are given by

B2 = fH,K(A),

fH,K(A)
def
= K + 2HA + 2AΨ(A, K, ν),

C = H + Ψ(A, K, ν).

Let us start with the case when a 6= 0,which corresponds for the potential V
to assuming that β 6= 0. The corresponding curves B2 = fH,K(A) are deduced
from figure 2, depending on the values of first integrals (H, K). In all cases we
have a family of equilibria implicitly given by

B = 0, C + Aφµ(A,−2AC) = 0, (i.e. ∂AfH,K(A) = 0),

which correspond to the curve in the (H, K) plane at figure 2. These equilibria
may be elliptic or hyperbolic depending on the branch Γe or Γh where (H, K)
is sitting. On the right branch, for ν > 0 and H = K = 0, there is one solution
homoclinic to 0, and, on the same branch of the (H, K) plane, the equilibria
(then non zero) are also limit points of homoclinics. Other small bounded
solutions are periodic, corresponding to the positive part of fH,K when the
curve intersects transversally the axis B = 0.

In the case a = 0, we need to consider the curves of the (A, B) plane given
by

B2 =
2

3
cA4 + 2ν̃A2 + 2HA + K,

which is the principal part of fH,K(A), and where ν̃ = ν + bK. We give at
figure 3 a sketch of the curve of equilibria Γ in all cases when νc 6= 0 (denoting
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Figure 2: Different graphs of A 7−→ fH,K(aA) for ν > 0, a 6= 0.

by Γe and Γh as above the elliptic or hyperbolic equilibria). We also draw the
various graphs in the plane (B2, A) necessary for the study of small bounded
solutions of (16,17,18), truncated to its normal form. Notice that the sizes of H
and K are respectively O(|ν|3/2), and O(ν2), which shows that ν̃ ∼ ν. At figure
4 we give the phase portraits for non trivial cases (ii) ν > 0, c < 0, and (iv)
ν < 0, c > 0, where we concentrate on bounded solutions for t ∈ R, and we notice
that a change H → −H is equivalent in these graphs, to the changing A → −A.
We notice that there are various homoclinics, two of them having a decay at
infinity in 1/t2 instead of exponential (ν > 0, c < 0, H = ±Hm, K = Km). We
notice one heteroclinic cycle connecting two equilibria (both invariants under
the reversibility symmetry) (ν < 0, c > 0, H = 0, K = K0).

Before giving a proof of the persistence of the various solutions we found
on system (16,17,18) truncated to its quadratic or cubic normal form, let us
describe the form of the corresponding waves solutions of the original system
(2),(1).

An equilibrium with Aeq 6= 0, gives x(t) ∼ q(t) = Ãeqt+q0, where Ãeq is close

to Aeq . This corresponds to solutions of (1) of the form Xn(t̃) = (Ãeq/τ)(nτ −
t̃) + q0. Observing that a consequence is Xn+1(t̃) − Xn(t̃) = Ãeq is constant,
these solutions represent a uniform stretching (if Aeq > 0) or contraction (if
Aeq < 0) of the lattice of particles.

A periodic solution in (A, B, C) gives x(t) ∼ q(t) = ωt + Ω(t), with Ω
periodic, i.e. a superposition of the uniform stretching (or compression) with
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a periodic oscillation. Notice that there are cases (choosing suitably (H, K))
where ω cancels (ω is close to the average of A). In these last cases, this leads
to time periodic solutions of (2).

A solution homoclinic to 0, corresponds to a localized solution of (2), since
q̇ also tends to 0 exponentially in time. We obtain such homoclinics for β 6=
0, ν > 0, and for β = 0, γ > 0, ν > 0. this last result is in accordance with the
results of [2], only interested into localized solutions.

We also obtain solutions homoclinic to non zero equilibria (for β 6= 0, ∀ν 6= 0,
and for β = 0, γν > 0), corresponding to the family of uniform stretching or
compression between particles at infinity. The particular cases H = ±Hm, K =
Km give a convergence in 1/t2 at infinity for A. Then the convergence to a

constant of x(t) − Ãeqt as t → ±∞ is in 1/t.
Finally, the heteroclinic solution connects two elements of this basic family

of solutions of stretched type at one infinity, and of compression type at the
other infinity!

4 Persistence of Homoclinics

In this section, we give details of the proof of existence of homoclinics close to
the homoclinic solutions of the normal form.

4.1 Case a 6= 0, ν > 0

For the normal form truncated at quadratic order, let us make the rescaling

A =
ν

a
A, B =

√
2ν3/2

a
B, C =

2ν2

a
C, t =

τ√
2ν

which gives the homoclinic solution under the form

H(τ) = [A(τ), B(τ), C(τ)]
T

= [h(τ), ḣ(τ), hC(τ)]T ,

h(τ) = −2/ cosh2 τ/2, hC = h/2 + h2/4.

This basic homoclinic H satisfies SH(−τ) = H(τ) (it is a ”reversible” solution).
We are now looking for a reversible solution of the full system (16,17,18) close
to H.

Let us pose [A(τ), B(τ), C(τ)]
T

= H + Y, then Y = (u, v, w)T satisfies

dY

dτ
−L(τ)Y = M(ν, τ, Y ) (24)

with

L(τ) =




0 1 0
1
2 + h 0 1

ḣ/2 1
2 (1 + h) 0


 , S =




1 0 0
0 −1 0
0 0 1


 ,
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and

SM(ν, τ, Y ) = −M(ν,−τ, SY ),

M(ν, τ, 0) = 0, DY M(ν, τ, 0) = 0,

||M(ν, τ, Y )|| = O(ν (||H ||+ ||Y ||)3 + ||Y ||2).

Let us define Banach spaces C0
−λ,S and C0

−λ,A, for any λ ∈ R :

C0
−λ,S =

{
Z ∈ C0(R, R3); SZ(−τ) = Z(τ), sup

τ∈R

||Z(τ)||eλ|τ | < ∞
}

,

C0
−λ,A =

{
Z ∈ C0(R, R3); SZ(−τ) = −Z(τ), sup

τ∈R

||Z(τ)||eλ|τ | < ∞
}

,

equipped with the norm ||Z||λ = sup
τ∈R

||Z(τ)||eλ|τ |.

We look for Y solution of (24) in C0
−1,S . We notice that Y 7−→ M(ν, ·, Y )

is as regular as the given function V ′ (analytic for example) in (2) from C0
−1,S

into C0
−2,S (see the estimate on M). The existence proof of the homoclinic

solution follows directly from the implicit function theorem, once we prove that
the linear operator d

dt − L(τ) has a bounded inverse from C0
−λ,A to C0

−1,A for
any λ > 1.

For inverting this linear operator, we need three independent solutions of
the linear homogeneous system

dY

dt
−L(τ)Y = 0, (25)

with no restriction on symmetry and behavior at infinity. This system is inte-
grable, as the original normal form, and we already know a solution which is
Ḣ(τ), due to time shift invariance. We notice that

SḢ(−τ) = −Ḣ(τ), Ḣ ∈ C0
−1,A.

It is easy to find two other solutions of (25):

P = [u1, u̇1,
u1

2
(1 + h)]T ,

Q = [u2, u̇2,
u2

2
(1 + h) + 1]T ,

with

u1(τ) = ḣ(τ)

∫ τ

0

[
s−2 − ḣ−2(s)

]
ds + ḣ(τ)/τ,

u2(τ) = ḣ(τ)

∫ τ

0

u1(s)ds− h(τ)u1(τ).
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We notice that u1 and u2 are regular and even, u1(0) = 1, u2(0) = 2, u1(τ) ∼
e|τ |, u2(τ) → −1, as τ → ±∞. It results that

SP (−τ) = P (τ), P ∈ C0
1,S ,

SQ(−τ) = Q(τ), Q ∈ C0
0,S .

Let us show the following

Lemma 2 Let λ > 1, then the linear operator d
dt −L(τ) has a bounded inverse

from C0
−λ,A into C0

−1,S .

Proof. We first notice that for any τ , {Ḣ, P, Q} forms a basis of R3, this is
a consequence of the wronskian identity which gives here

(Ḣ, P, Q) = det(Ḣ, P, Q) = −1.

Let us decompose Y as follows, which is always possible for functions having
values in R3 :

Y = rḢ + pP + qQ,

then the unique solution Y ∈ C0
−1,S of

dY

dt
−L(τ)Y = G ∈ C0

−λ,A

is given by

p(τ) =

∫ ∞

τ

(G(s), Q(s), Ḣ(s))ds, (even)

q(τ) =

∫ ∞

τ

(G(s), Ḣ(s), P (s))ds, (even)

r(τ) = −
∫ τ

0

(G(s), P (s), Q(s))ds (odd).

It is clear that there is a positice number cλ such that

||Y ||1 ≤ cλ||G||λ, ∀λ > 1

holds. Notice that λ = 1 is not good because of the estimate on r(τ) which
would lead to a growing in |τ | at infinity. Observe that we only need λ = 2 here,
because of a complete account in H of the linear terms in system (16,17,18).
This ends the proof of the lemma.

4.2 Case a = 0, ν > 0, c < 0

The two homoclinics to 0, obtained for ν > 0 on the cubic normal form, are as
follows

H(t) = (A, B, C)T = (h, ḣ, hC)T ,

h(t) =
√
−3ν/c

(
cosh

√
2νt

)−1

,

hC = νh + ch3/3.
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The cubic normal form linearized at H(t) is again integrable (this comes imme-
diately from the integrability of the normal form). We then proceed with the
same method as at previous section. The properties of the basis of solutions of
the homogeneous linear system are identical, concerning their symmetries and
exponential behavior at infinity (modulo adapting the exponent). We notice
that the term with the factor (B2 − 2AC) may be pushed into the rest, since
its size is smaller than the principal part (once scaling are made, the rest M is
here O(

√
|ν|(||H ||+ ||Y ||)3 + ||Y ||2) ). The proof of persistence is then the same

as above. We then established the following

Theorem 3 For ε > 0 small enough, we consider the system (2) for 1 − ε <
τ2V ′′(0) < 1, i.e. for velocities of the waves slightly above the first critical value
(”sound velocity”).

(i) In the case when V ′′′(0) 6= 0, there exist one and only one ”small” lo-
calized solution of size O[1− τ 2V ′′(0)] with an exponential decay at infinity. If
V ′′′(0) < 0 the localized wave is of ”local compression” type, while if V ′′′(0) > 0
it is of ”local stretching” type. Moreover, this solution is odd, and we can give
its Taylor expansion in powers of the bifurcation parameter 1− τ 2V ′′(0).

(ii) In the case when V ′′′(0) = 0, V (4)(0) > 0, there exist two and only two
”small” localized solutions of size O([1−τ 2V ′′(0)]1/2). They are both monotonous
and odd. One wave is of ”compression” type, while the other is of ”stretched”
type. Their decay at infinity is exponential, and we can give the Taylor expansion
of these solutions in powers of the bifurcation parameter [1 − τ 2V ′′(0)]. In the
case when V (4)(0) < 0 there is no small localized solution.

The oddness of these localized solutions comes from the reversibility of the
solutions projected on the x component. We have x(t) ∼

∫ t

0
A(s)ds , hence since

the sign of A is constant for each of the homoclinic solutions (see figures 2 and
4), x is a monotonic function and the results about compression or stretching
follows directly from an examination of the sign of A. At ±∞, x(t) tends towards
opposite limits.

Remark 4 Our theorem above should be compared with theorem 1 of G.Friesecke,
J.A.Wattis [2]. These authors used a variational approach for obtaining nice
global results on existence of localized solutions which have the properties of our
local solutions. Our method is only local, but its advantage is that it is construc-
tive, and valid for generic potentials V. In addition, as we see below, we obtain
ALL ”small” waves, solutions of (2), i.e. not only the localized ones.

4.3 Other homoclinic solutions

We observed on the normal form, at section 3 that there are hyperbolic equilibria
other than the origin, which are the end points of homoclinic orbits. We show
below how to prove the persistence of corresponding solutions for the system (2),
which are localized if we forget the uniform compression or expansion between
particles at infinity. We include here the study of the special cases where the

13



equilibrium is a saddle-node and the homoclinic has just a polynomial decay at
infinity (cases ν > 0, c < 0, K = Km, H = ±Hm).

In the case of hyperbolic equilibria (invariants under S), the method is ex-
actly the same as the one we follow when this point is the origin (previous
section). The only technicallity comes from the necessity to take into account
the full vector field (16,17,18) for defining the new origin and the full linear
terms around this new origin.

Let us consider for example the case a 6= 0. Equilibria of (16,17,18) are of
the form (A0, 0, C0) where C0 is determined via the implicit function theorem
from equation

C0 + Aφµ(A0,−2A0C0) + RB(A0, 0, C0, µ) = 0,

which leads to
C0 = −νA0 − aA2

0 + O(A3
0).

The linearized operator at these equilibria is now given by




0 1 0
ν + 2aA0 + O(A2

0) 0 1 + O(A2
0)

0 ν + aA0 + O(A2
0) 0




which anticommutes with S and which has a zero eigenvalue. Moreover it is
a regular perturbation of the 3 × 3 Jordan block matrix. Hence, we use again
normal form technique to transform the linear part as well as the nonlinear part
of the vector field into a quadratic normal form close to the quadratic normal
form we had originally in (16,17,18). Since A0 is at most of order ν coefficients
of the new normal form are at order ν close to the old ones. This may be a
big change for the status of eigenvalues near 0, but we already know the status
of such eigenvalues from the previous study (see figure 2). Redefining a new
parameter ν′ to mimic the proof of previous section, we can then proceed in
exactly the same way for proving the persistence of all the homoclinic orbits we
found on the normal form, provided they end to a hyperbolic equilibrium, and
provided that we are not close to the singular case of the heteroclinic orbit for
the cubic normal form of the case a = 0, c > 0, ν < 0, H = 0, K = K0.

Now arises the special case when the equilibrium is not hyperbolic. We found
that, for a = 0, ν > 0, c < 0, this situation happens when A0 is a triple root of
fHm,Km

(A) = 0. This corresponds to a linearized operator at this equilibrium
with a triple 0 eigenvalue and a full 3×3 Jordan block. Let us use the same trick
as above. First we show that such type of equilibria still exist for the full vector
field (implicit function theorem for solving in (C, ν) as a function of A0, then
invert A0 in function of ν, in choosing its negative root A0 = −

√
ν/(−2c)+O(ν)

(which corresponds to the case H = Hm). The linearized operator at this equi-
librium has a triple 0 eigenvalue by construction.Using the same technicalities
as above, we can produce a new cubic normal form which is a perturbation of
the one in (16,17,18), but with an unperturbed linear part (corresponding to
ν = 0 in this previous system). This new normal form introduces a quadratic
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coefficient of order
√

ν. This forces to consider also cubic coefficients which lead
to terms of the same order, and which are small perturbations of the cubic
terms of (16,17,18). Now the truncated system is integrable, as before, and

the homoclinic solution is still even for its A component denoted by Ã with
Ã(t) = A(t) − A0 ∼ 3√

−2cν
t−2 as t → ±∞. Now we use the method we de-

veloped in [5] on another example of reversible system with a non hyperbolic
limit point of homoclinic solution. The proof follows roughly the same lines
as above, except that we need adapted spaces of continuous functions with the
suitable decay at infinity, (here polynomial), specially in a lemma analogous to
our lemma 2 above.

4.4 Heteroclinic cycle

In the case a = 0, c > 0, ν < 0, we find for the cubic normal form in (16,17,18)
the heteroclinic cycle

B2 = 2νA2 +
2c

3
A4 + K0,

C = νA +
c

3
A3,

with K0 = 3ν2

2c and ending at points (±A0, 0,±C0), A0 =
√
−3ν/2c, C0 = ν

2A0.
Notice that one branch is the image of the other by the symmetry S. In the
above expressions, we did not consider in (16,17,18) the terms with the factor
(B2 − 2AC) = K , because this factor is of order O(ν2), and the corresponding
terms in the normal form are of higher order than the main ones (so we push
these terms in the rests RB and RC). The above end points belong to the one
parameter family of equilibria for system (16,17,18), given, via implicit function
theorem, by

A = Ae, B = 0, Ce = C(Ae),

0 = Ce + νAe + cA3
e + RB(Ae, 0, Ce).

For proving the persistence of the heteroclinic cycle for the full vector field, the
idea is to study the intersection points of each unstable manifold of the equilibria
near (−A0, 0,−C0) with the plane A = 0. These intersections describe a curve
Γ− when Ae varies near −A0. In the same way we study the intersection points
of each stable manifolds ending at equilibria near (A0, 0, C0) with the plane
A = 0. They also describe a curve Γ+ when Ae varies near A0. We then prove
that these two curves intersect transversally.

Let us consider the family of unstable manifolds of equilibria close to (−A0, 0,−C0).
For the cubic normal form, these curves, parameterized by A, are given by

B2 = 2νA2 +
2c

3
A4 + 2AH + K,

C = νA +
c

3
A3 + H,
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where H , and K are linked by the fact that for Ae

H = −2νAe −
4c

3
A3

e,

K =
2c

3
A4

e

holds. In the plane A = 0, the curve Γ− is then given by (B, C) = [
√

K(Ae), H(Ae)]
for Ae close to −A0. In the same way, the curve Γ+ is given by the same form,
but for Ae close to A0. The two tangents to Γ− and Γ+ at the intersection
point (B, C) = (

√
K0, 0) are parallel to the following directions: (±2

√
−ν, 4ν).

This shows the transversallity of the intersection of Γ− ∩ Γ+ for the cubic nor-
mal form. We need now to prove that the perturbation introduced by taking
account of the full vector field (16,17,18), does not break this transversallity.
This is not obvious since the size of the perturbation is fixed, and not arbitrary
small. However, after a suitable rescaling, letting the heteroclinic cycle of the
normal form of order 1, as well as the exponential decay at infinity, the pertur-
bation terms of the rescaled system are O(

√
ν), and the proof of persistence is

straightforward with the transversallity argument. Let us sum up our results
with the following

Theorem 5 For ε > 0 small enough, we consider the system (2) for 1 − ε <
τ2V ′′(0) < 1 + ε (velocities of the waves near the ”sound velocity”).

(i) For V ′′′(0) 6= 0, there is a one parameter family of ”mainly localized”
small solutions. Their size is O(|1 − τ 2V ′′(0)|). The function t 7−→ x(t) is not
always monotonous, and at ±∞ we have x(t)−Aet → x±0 ,the convergence being
exponential. For Ae > 0, the limit at both infinities is a uniform stretching,
while if Ae < 0, the limit at both infinities is a uniform compression.

(ii) For V ′′′(0) = 0, and V (4)(0) > 0, τ2V ′′(0) < 1, or V (4)(0) < 0, τ2V ′′(0) >
1, there is a one parameter family of ”mainly localized” solutions. Their size is
O(|1− τ2V ′′(0)|1/2).

(iii) For V ′′′(0) = 0, and V (4)(0) > 0, τ2V ′′(0) < 1, there are two ”mainly
localized” solutions, of the type above, but whose convergence at infinity is in
1/|t| (then not exponential). One of these solutions has a uniform stretching
limit, the other has a uniform compression limit.

(iv) For V ′′′(0) = 0, and V (4)(0) < 0, τ2V ′′(0) > 1, there is a heteroclinic
cycle of two solutions. One of them has a uniform compression at −∞ and a
uniform stretching at +∞. It is the opposite for the other solution.

5 Persistence of periodic solutions

We consider the system (16,17,18) in the case when the normal form truncated
at quadratic order if a 6= 0, or at cubic order if a = 0, c 6= 0, possesses periodic
solutions. They constitute a two-parameter family because of the arbitrariness
of the choice of (H, K). Notice that B cancels twice on each of these solutions,
the branch for B > 0 being mapped by S into the branch B < 0. The idea is
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then to only consider half of these solutions, i.e. their branch such that B > 0.
We then complete the solution by applying the symmetry S, like this, we build
”reversible” periodic solutions.

We first eliminate time and consider the corresponding solutions parameter-
ized by A, in the plane (B2, C), for B > 0, passing through end points such
that B = 0. Let us consider, for instance the case a 6= 0, ν > 0, and rescale as in
section 4.1. Setting B2 = u, we obtain the following system in the (u, C) plane:

dC

dA
=

1

2
(1 + A) + νρ1(A, u, C, ν),

du

dA
= 2C + A + A2 + νρ2(A, u, C, ν),

where ρ1 and ρ2 are regular functions in their arguments. Now consider one
solution of the unperturbed system

u = A2 +
1

2
A3 + 2HA + K,

C =
1

2
A +

1

4
A2 + H,

for values of (H, K) such that this solution connects two points given by A =
A1, C = C1 and A= A2, C = C2 where u = 0, and where u > 0 in between (see
the form of the cubic at figure 2). We also assume that these end points are not
equilibria, since we deal with periodic solutions (not homoclinic). This means
that du

dA does not cancel at A = A1 or A2. Now consider the full (perturbed)

system, and start at point A = A1 with (u, C) = (0, C1). The classical pertur-
bation result on ordinary differential equations, shows that there is a trajectory
near the unperturbed one, and reaching after a finite interval of A′s (A near
A2) the line u = 0, near C = C2. This proof is valid as soon as we are not too
close to a homoclinic curve, i.e. the starting point has to be not too close to
an equilibrium. Completing the trajectory in the (A, B, C) space by symmetry
S, then gives a reversible periodic solution. So we indeed have a two parameter
family of such solutions in all cases, except for a = 0, ν > 0, c > 0 (see figure 3
case (i)). Let us sum up this result in the following

Theorem 6 For ε > 0 small enough, we consider the system (2) for 1 − ε <
τ2V ′′(0) < 1 + ε (velocities of the waves near the ”sound velocity”).

(i) For V ′′′(0) 6= 0, there is a two parameter family of periodic small solu-
tions. Their size is O(|1− τ 2V ′′(0)|).

(ii) For V ′′′(0) = 0, and V (4)(0) > 0, τ2V ′′(0) < 1, or τ2V ′′(0) > 1, there is
a two parameter family of periodic solutions. Their size is O(|1− τ 2V ′′(0)|1/2).

The average of each periodic solution is a uniform compression or a uniform
stretching of the lattice or the basic uniform state (x = 0).

6 Appendix

In this appendix, we compute the coefficients of φµ as mentioned in (20).
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6.1 Linear coefficients

The linear operator for the system (16,17,18) takes the form




0 1 0
ν 0 1
0 ν 0




whose eigenvalues are 0 and ±
√

2ν. A simple identification with the eigenvalues
λ close to 0, given by the dispersion relation N(λ; µ) = 0, for µ close to 1, leads
to

ν = 6(1− µ) + O[(1− µ)2].

In fact, we can also compute the linear terms of order ν in Φµ denoted by

νAΦ
(1)
100 +νBΦ

(1)
010 +νCΦ

(1)
001. They are solution of the following system, obtained

after identification between linear terms in (14), after using (15) and (16,17,18)

ζ2 − L̂µ0
Φ

(1)
100 = −νΦ

(1)
010 − νµ̂L(1)Φ

(1)
100, (26)

ζ3 + Φ
(1)
100 − L̂µ0

Φ
(1)
010 + µ̂(0, 1, 0)T = −νΦ

(1)
001 − νµ̂L(1)Φ

(1)
010, (27)

Φ
(1)
010 − L̂µ0

Φ
(1)
001 = −νµ̂L(1)Φ

(1)
001, (28)

where µ̂ = (1−µ)/ν and where we defined L̂(1) by L̂µ = L̂µ0
−νµ̂(ν)L̂(1). Notice

that we already know that µ̂(0) = 1/6.
All coefficients are functions of ν, and they are uniquely determined by the

implicit function theorem, once we add the conditions ζ∗0 (Φijk) = ζ∗1 (Φijk) = 0,
i + j + k = 1, and SΦijk = (−1)j+1Φijk We obtain for ν = 0

Φ
(1)
100 = ζ3,

Φ
(1)
010 = kζ0 + (0, 0, v4/12)T , k = 13/12600,

Φ
(1)
001 = kζ1 + (0, 0, v5/60)T .

6.2 Quadratic coefficients

Defining quadratic coefficients of Φµ by
∑

i+j+k=2 ΦijkAiBjCk, where, as above,
Φijk are functions of ν, we identify quadratic terms in the same way as above

aζ2 = L̂µ0
Φ200 − νµ̂(ν)L̂(1)Φ200 − νΦ110 − aνΦ

(1)
010,

aζ3 + 2Φ200 = L̂µ0
Φ110 − νµ̂(ν)L̂(1)Φ110 − νΦ101 − 2νΦ020 − aνΦ

(1)
001+

+ (0, 2τ2β, 0)T + 2M (2)
τ (νζ3, ζ2 + νΦ

(1)
010) + 2νM (2)

τ (ζ1, Φ
(1)
010),
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Φ110 = L̂µ0
Φ020 − νµ̂(ν)L̂(1)Φ020 − νΦ011,

Φ110 = L̂µ0
Φ101 − νµ̂(ν)L̂(1)Φ101 − νΦ011,

2Φ020 + Φ101 = L̂µ0
Φ011 − νµ̂(ν)L̂(1)Φ011 − 2νΦ002 + (0, τ2β/3, 0)T +

+ 2M (2)
τ (νΦ

(1)
010, ζ3 + νΦ

(1)
001) + 2νM (2)

τ (ζ2, Φ
(1)
001),

Φ011 = L̂µ0
Φ002 − νµ̂(ν)L̂(1)Φ002,

where M
(2)
τ (V, V ) = βτ2(0,

(
δ1X − x

)2 − (x− δ−1X)2, 0)T . Solving the system
for ν = 0, leads to a unique solution {Φijk, a, k1} satisfying

ζ∗0 (Φijk) = 0, i + j + k = 2, and SΦijk = (−1)j+1Φijk , (29)

ζ∗1 (Φijk) = 0, i + j + k = 2, i 6= 2, ζ∗1 (Φ200 − k1ζ1) = 0. (30)

Indeed we obtain

Φ200 = aζ3 + k1ζ1, a(0) = −8τ2β, k1(0) = −(4/15)τ2β,

Φ110 = 2k1ζ2 + x110ζ0 + (0, 0, av4/8)T , x110 = 13a/8400,

Φ020 = Φ101 = x110ζ1 + 2k1ζ3 + (0, 0, av5/40)T ,

Φ011 = 3x110ζ2 + x011ζ0 + (0, 0, k1v
4/4 + av6/80)T ,

Φ002 = 3x110ζ3 + x011ζ1 + (0, 0, k1v
5/20 + av7/560)T .

It then results by the implicit function theorem, that quadratic coefficients
{Φijk, a, k1} are uniquely solvable in function of ν, and satisfy (29,30). It also
results that in the case when β = 0 (no quadratic term in V ′), then all quadratic
coefficients cancel, as well in the reduced system (16,17,18), as in Φµ (a = 0 and
Φijk = 0, i + j + k = 2).

6.3 Cubic coefficients

In this section we assume that the quadratic coefficient β in V ′ cancels. It is
then necessary to compute the coefficients b and c in φµ (20). The cubic term
in (14) is then given by

M (3)
τ (V, V, V ) =

(
0, τ2γ[(δ1X − x)3 − (x− δ−1X)3], 0

)T
.

Here below we only compute the principal part for ν = 0, of the cubic coefficients
b and c of the normal form (16,17,18). Identification of the coeffients of A3, A2B,
A2C, AB2, ABC, B3 leads to the system

cζ2 = L̂µ0
Φ300, (31)

cζ3 + 3Φ300 = L̂µ0
Φ210 + (0, 3τ2γ, 0)T , (32)

−2bζ2 + Φ210 = L̂µ0
Φ201, (33)

bζ2 + 2Φ210 = L̂µ0
Φ120, (34)

−2bζ3 + 2Φ201 + 2Φ120 = L̂µ0
Φ111 + (0, τ2γ, 0)T , (35)

bζ3 + Φ120 = L̂µ0
Φ030 + (0, τ2γ/4, 0)T . (36)
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The first equation leads to Φ300 = cζ3 + k1ζ1, and applying ζ∗3 to equation (32),
we obtain

c = −9τ2γ.

Now combining (33) with (34), and (35) with (36) we have

−5bζ2 = L̂µ0
[2Φ201 − Φ120],

−5bζ3 + 2Φ201 − Φ120 = L̂µ0
[Φ111 − 3Φ030] + (0, τ2γ/4, 0)T .

Proceeding as above for c, we obtain immediately

b =
3

10
τ2γ.
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Figure 3: Curves Γ of equilibria in (H, K) planes, and graphs of fH,K(A).
(i) ν > 0, c > 0, (ii) ν > 0, c < 0, (iii) ν < 0, c < 0, (iv) ν < 0, c > 0.

Hm ∼ 4
3 |ν|

√
−ν
2c , Km ∼ − ν2

2c , K0 ∼ 3ν2/2c.
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Figure 4: Phase portraits in the (A, B) plane in the case a = 0 (β = 0) for
system (16,17,18). (i) ν > 0, c < 0, H = 0, (ii) ν > 0, c < 0, 0 < H < Hm, (iii)
ν > 0, c < 0, H = Hm, (iv) ν > 0, c < 0, Hm < H, (v) ν < 0, c > 0, H = 0, (vi)
ν < 0, c > 0, 0 < H < Hm.
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