A SIMPLE GLOBAL CHARACTERIZATION FOR NORMAL FORMS OF SINGULAR VECTOR FIELDS

C. ELPHICK ${ }^{1 *}$, E. TIRAPEGUI ${ }^{2}$, M.E. BRACHET ${ }^{3,4}$, P. COULLET ${ }^{1,3}$ and G. IOOSS ${ }^{5}$
${ }^{1}$ Physique Théorique, Université de Nice, Parc Valrose, 06034 Nice, France. Unité Associée au CNRS
${ }^{2}$ Faculté des Sciences, Université Libre de Bruxelles, CP 226, 1050 Bruxelles, Belgique and Universidad de Chile, Facultad de Ciencias Fisicas y Matematicas, Departamento de Fisica, Santiago, Chile
${ }^{3}$ Observatoire de Nice, 06003 Nice, France
${ }^{4}$ Groupe de Physique des Solides, ENS, 24 rue Lhomond, 75231 Paris, France
${ }^{5}$ Laboratoire de Mathématiques, Université de Nice, Parc Valrose, 06034 Nice Cedex, France

Received 10 June 1986
Revised manuscript received 9 June 1987

Abstract

We derive a new global characterization of the normal forms of amplitude equations describing the dynamics of competing order parameters in degenerate bifurcation problems. Using an appropriate scalar product in the space of homogeneous vector polynomials, we show that the resonant terms commute with the group generated by the adjoint of the original critical linear operator. This leads to a very efficient constructive method to compute both the nonlinear coefficients and the unfolding of the normal form. Explicit examples, and results obtained when there are additional symmetries, are also presented.

1. Introduction

The dynamics at the onset of several instabilities in a physical system undergoing a degenerate bifurcation near an equilibrium point can often be reduced to the temporal evolution of a simple set of ordinary differential equations. These so-called "amplitude equations" or "normal forms" describe the behavior of only those normal modes which are mildly unstable or slightly damped in linear theory. All the other, strongly damped, normal modes are eliminated from the description. This type of reduction, besides allowing an obvious simplification of the original problem, is also very useful for classification purposes. An identical set of amplitude equations is obtained for a class of original problems, it will thus display any dynamical behavior common to this class in a prototypical way. In this context, note that although the practical interest of the study of multiple bifurcations decreases with the degree of degeneracy, the study per se of the corresponding normal forms nevertheless presents a great interest because of the possibility of picking up very rich nonlinear behavior (see Arneodo et al. [1] and references therein). The present work deals with the derivation and the characterization of such degenerate normal forms.

Of course the problem of computing a normal form is not new; mathematical references can be found in, e.g., Arnol'd [3] or Guckenheimer and Holmes [11]. There are basically two methods to derive a normal form. With the first method [15, 12, 7] one first computes a locally invariant and attractive small dimensional manifold, the so-called center manifold, on which the dynamics reduces for large times. Then a nonlinear change of variables is done to put the small dimensional system into normal form. The second method (which has been used in nonlinear hydrodynamics since a long time, see [17]) has recently been greatly clarified, see [8] and references therein. With this method, one systematically expands the original fields in power of the amplitudes of linearly marginal modes, yielding both the normal form and the center
*Current address: Astronomy Department, Columbia University, New York, NY 10027, USA.
manifold. The crucial point in normal form computations is to find a homogeneous polynomial vector field of degree k in a space complementary to the range of the so-called "homological operator". The dimension of the vector space strongly increases with k and direct computations soon become impracticable [11]. Very recently Cushman and Sanders [9] used representation theory of the group $\operatorname{sl}(2, \mathbb{R})$ which leads to the normal form in a constructive way.

As we shall see below, our approach is elementary and more direct since no splitting of the linear operator L_{0} (see (13)) in the critical subspace is needed.

Let us recall that the resonant nonlinear terms of a normal form are those ones that cannot be eliminated by a nonlinear polynomial change of variable. Technically this means that they are in the kernel of the adjoint of the homological operator. This is just the Fredholm alternative which, as is well known, is independent of the nondegenerate scalar product used to define "adjoint" and "orthogonal" (see section 2.1). In this work we define a scalar product in the space of homogeneous polynomials such that the adjoint of the homological operator is the homological operator associated with the adjoint of the critical linear part of the original equation. Nonlinear terms of the normal form are thus equivariant under (i.e. commuting with) the group G generated by the adjoint of the original linear operator, this is our main result, given in section 2.2. In particular if the linear critical operator L_{0} is diagonal then the whole normal form is found to be equivariant under G. For example in the case of the Hopf bifurcation G is the group of rotations in two dimensions and therefore the corresponding normal form is invariant under arbitrary rotations in the complex plane, property which in turn justifies the widely used argument that the invariance of the original system under time translations implies the invariance of the Hopf-normal form under rotations in the complex plane.

The general characterization obtained in section 2.1 allow us to interpret the resonant terms (i.e. equivariant under G) in the normal form as scalar renormalizations of the linear Arnol'd-Jordan unfolding and to derive a partial differential equation obeyed by these resonant terms. This gives us a very fast computational method that we apply to some classical examples in section 2.4 and to a more complicated one in the appendix. The rest of the paper is organized as follows: In section 2.3 we treat the case where the original problem has an additional symmetry. In section 3.1 we show how to use our method for the computation of the unfolding of the normal form. Finally, in section 3.2, we give the unfolding of the classical examples treated in section 2.4. Results for the special case where none of the critical eigenvalues has zero imaginary part are also given in the appendix.

2. Normal form of the unperturbed vector field

2.1. The homological equation

We study here evolution problems of the form

$$
\begin{equation*}
\frac{\mathrm{d} Z}{\mathrm{~d} t}=\mathscr{F}(Z), \tag{1}
\end{equation*}
$$

where Z belongs to the phase space $E=\mathbb{R}^{n}$ and $\mathscr{F}(0)=0$. We write (1) in a finite dimensional space, with the understanding that much of the following analysis can be easily adapted for evolution partial differential systems, such as those occurring in non-linear hydrodynamical problems. In fact, all we need to assume is that there exists a stationary solution. In what follows we shall avoid, as much as possible, the

Fig. 1. A typical distribution of the spectrum of \mathscr{L}.
use of explicit coordinates such as $\mathscr{F}_{i}\left(z_{1}, \ldots, z_{n}\right)$ or $\mathscr{L}_{i j}=\partial \mathscr{F}_{i} / \partial z_{j}$. To wit, let us define

$$
\begin{equation*}
\mathscr{L}=\mathrm{D}_{Z} \mathscr{F}(0) \tag{2}
\end{equation*}
$$

to be the linear operator $E \rightarrow E$ whose matrix elements are given by $\partial \mathscr{F}_{i} / \partial z_{j}$.
We assume that the set of eigenvalues of \mathscr{L} is composed of two pieces, one on the imaginary axis and the other with a strictly negative real part (fig. 1). The decomposition of the space E, associated with this decomposition of the spectrum of \mathscr{L}, is written [14] as

$$
\begin{equation*}
E=E_{0} \oplus E_{-} \tag{3}
\end{equation*}
$$

and the restrictions of \mathscr{L} to these invariant subspaces are denoted by L_{0} and L_{-}.
The problem of finding a normal form for (1) reads: "Find a polynomial Φ in (X, Y) taking values in E, and a polynomial F in X taking values in E_{0}, as simple as possible, such that we can write

$$
\begin{align*}
& Z=X+Y+\Phi(X, Y), \quad X \in E_{0}, Y \in E_{-}, \tag{4}\\
& \frac{\mathrm{d} X}{\mathrm{~d} t}=L_{0} X+F(X)+\mathcal{O}\left((|X|+|Y|)^{P}\right), \tag{5}\\
& \frac{\mathrm{d} Y}{\mathrm{~d} t}=L_{-} Y+N(X, Y)+\mathcal{O}\left(|X|^{P}\right)
\end{align*}
$$

where

$$
\begin{equation*}
N(X, Y)=\mathcal{O}(|Y|(|X|+|Y|)), \quad F(X)=\mathcal{O}\left(|X|^{2}\right), \quad \Phi(X, Y)=\mathcal{O}\left((|X|+|Y|)^{2}\right) \tag{6}
\end{equation*}
$$

and P is arbitrarily large (but fixed)". The estimate for N in (6) means that the set $Y=0$ is invariant under the dynamics of (5) up to order P. This is a direct consequence of the form for N in (10) ${ }_{4}$.

Remark 0. More precisely our program is to find a set of polynomials P_{j} which generate the invariant algebra of the group given by the flow of the linear vector field $L^{*}{ }_{0} X$ (* denotes the usual adjoint
operation in E_{0}) such that we can write (see Theorem 3)

$$
F(X)=\sum_{i=1}^{\operatorname{dim}\left(E_{0}\right)} \alpha_{i}\left(p_{j}\right) v_{i}
$$

where the α_{i} are rational fractions of the p_{j} and the v_{i} are fixed vector valued polynomials.
It is worth noting that in all the examples treated here we can in fact write [9]

$$
F(X)=\sum_{i=1}^{n\left(\operatorname{dim}\left(E_{0}\right)\right)} \tilde{\boldsymbol{\alpha}}_{i}\left(p_{j}\right) \tilde{v}_{i}
$$

where $\tilde{\alpha}_{i}$ are polynomials in the p_{j} and \tilde{v}_{i} are fixed vector valued polynomials.
We will say that a singular vector field is in normal form if its non-linear part can be written in any of the two forms for F given above. This will be equivalent (see section 2) to the fact that the Lie derivative of F (in particular of v_{i}, \tilde{v}_{i}) along $L_{0}^{*} X$ vanishes. Let us note that if L_{0} is diagonal and F is in normal form then also the Lie derivative of $L_{0} X+F$ along $L_{0}^{*} X$ vanishes.

In what follows we often refer to the normal form of (1) while in fact considering the truncated equation (5) ${ }_{1}$:

$$
\begin{equation*}
\frac{\mathrm{d} X}{\mathrm{~d} t}=L_{0} X+F(X) \tag{7}
\end{equation*}
$$

which in fact is the object of fundamental interest for further analysis of the dynamics of system (1).
Remark 1. The manifold in E given by the equation

$$
\begin{equation*}
Z=X+\Phi(X, 0) \tag{8}
\end{equation*}
$$

is the approximation, up to order $|X|^{P}$, of a center manifold $[15,12,7]$ for (1). It is tangent to the subspace E_{0} at 0 and it has the dimension of E_{0}. It is clear that, if we use (7) instead of (5) (neglecting $\mathcal{O}\left((|X|+|Y|)^{P}\right)$, this manifold is locally invariant since Y remains equal to 0 . It is also locally attracting, due to the negativeness of the real parts of the eigenvalues of L_{-}.

Remark 2. The manifold in E given by the equation

$$
\begin{equation*}
Z=Y+\Phi(0, Y), \quad Y \in E_{-} \tag{9}
\end{equation*}
$$

is the approximation up to the order $|Y|^{P}$ of the stable manifold of 0 . It is tangent to E_{-}at $\cdot 0$, and for any initial data on it, $Z(t)$ will relax to 0 exponentially when $t \rightarrow \infty$ with the truncated equation (5) ${ }_{2}$ (without $\left.\mathcal{O}\left(|X|^{P}\right)\right)$.

Let us start by defining the Taylor expansions of \mathscr{F}, Φ, F, N as follows:

$$
\begin{align*}
& \mathscr{F}(Z)=\mathscr{L} Z+\sum_{k \geq 2} \mathscr{F}_{k}\left[Z^{(k)}\right], \\
& \Phi(X, Y)=\sum_{p+q \geq 2} \Phi_{p q}\left[X^{(p)}, Y^{(q)}\right], \\
& F(X)=\sum_{p \geq 2} F_{p}\left[X^{(p)}\right] \tag{10}\\
& N(X, Y)=\sum_{\substack{p+q \geq 2 \\
q>0}} N_{p q}\left[X^{(p)}, Y^{(q)}\right],
\end{align*}
$$

where F_{p}, \mathscr{F}_{p} are p-linear symmetric in its arguments, and $\Phi_{p q}, N_{p q}$ are p-linear symmetric in the X variable, and q-linear symmetric on $Y . Z^{(k)}$ stands for the repetition of k identical arguments Z, equivalent notations are used for $X^{(p)}$ and $Y^{(q)} . \mathscr{F}_{k}\left[Z^{(k)}\right]$ is thus a vector valued homogeneous polynomial of degree k in the components of Z.

In order to obtain equations for $\Phi_{p q}, F_{p}, N_{p q}$ we need to identify the expansions in (X, Y) of $\mathscr{F}(X+Y+\Phi(X, Y))$ and of $\mathrm{d} X / \mathrm{d} t+\mathrm{d} Y / \mathrm{d} t+\mathrm{D}_{X} \Phi(X, Y) \cdot \mathrm{d} X / \mathrm{d} t+\mathrm{D}_{Y} \Phi(X, Y) \cdot \mathrm{d} Y / \mathrm{d} t$ where $\mathrm{d} X / \mathrm{d} t$ and $\mathrm{d} Y / \mathrm{d} t$ are replaced by the right-hand side of (5) (the notation $\mathrm{D}_{X} \Phi(X, Y)$ stands for the linear operator acting from E_{0} into E, whose matrix is given by $\left(\partial \Phi_{i} / \partial X_{j}\right)$).

The identification at the order 1 in X and Y is just a verification:

$$
\begin{equation*}
\mathscr{L}(X+Y)=L_{0} X+L_{-} Y . \tag{11}
\end{equation*}
$$

Next, higher orders $p+q \geq 2$ lead to identities of the form

$$
\begin{align*}
\mathscr{L} & \Phi_{p q}\left[X^{(p)}, Y^{(q)}\right]-\mathrm{D}_{X} \Phi_{p q}\left[X^{(p)}, Y^{(q)}\right] \cdot L_{0} X-\mathrm{D}_{Y} \Phi_{p q}\left[X^{(p)}, Y^{(q)}\right] \cdot L_{-} Y \\
& =\left\{\begin{array}{ll}
F_{p}\left[X^{(p)}\right] & q=0 \\
N_{p q}\left[X^{(p)}, Y^{(q)}\right] & q>0
\end{array} \quad+R_{p q}\left[X^{(p)}, Y^{(q)}\right],\right. \tag{12}
\end{align*}
$$

where $R_{p q}$ only depends on $\left\{\Phi_{p^{\prime} q^{\prime}}, F_{p^{\prime}}, N_{p^{\prime} q^{\prime}} ; p^{\prime}+q^{\prime} \leq p+q-1\right\}$. The strategy is to solve (12) step by step, starting with $p+q=2$, and then increasing $p+q$ by 1 at each step.

In what follows we denote by P_{0} and P_{-}the two projections on E_{0} and E_{-}which commute with \mathscr{L} [14]. We have

$$
\begin{equation*}
P_{0}+P_{-}=\mathrm{Id}, \quad P_{0} L_{-}=0, \quad P_{-} L_{0}=0, \quad \mathscr{L} P_{0}=L_{0}, \quad \mathscr{L} P_{-}=L_{-} . \tag{13}
\end{equation*}
$$

Eq. (12) may be decomposed, yielding for $q=0$,

$$
\begin{align*}
& L_{0} P_{0} \Phi_{p 0}\left[X^{(p)}\right]-\mathrm{D}_{X} P_{0} \Phi_{p 0}\left[X^{(p)}\right] \cdot L_{0} X=F_{p}\left[X^{(p)}\right]+P_{0} R_{p 0}\left[X^{(p)}\right] \tag{14}\\
& L_{-} P_{-} \Phi_{p 0}\left[X^{(p)}\right]-\mathrm{D}_{X} P_{-} \Phi_{p 0}\left[X^{(p)}\right] \cdot L_{0} X=P_{-} R_{p 0}\left[X^{(p)}\right] . \tag{15}
\end{align*}
$$

For $q \neq 0$, eq. (12) gives

$$
\begin{align*}
& L_{0} P_{0} \Phi_{p q}\left[X^{(p)}, Y^{(q)}\right]-\mathrm{D}_{X} P_{0} \Phi_{p q}\left[X^{(p)}, Y^{(q)}\right] \cdot L_{0} X-\mathrm{D}_{Y} P_{0} \Phi_{p q}\left[X^{(p)}, Y^{(q)}\right] \cdot L_{-} Y \\
& \quad=P_{0} R_{p q}\left[X^{(p)}, Y^{(q)}\right] \tag{16}\\
& L_{-} P_{-} \Phi_{p q}\left[X^{(p)}, Y^{(q)}\right]-\mathrm{D}_{X} P_{-} \Phi_{p q}\left[X^{(p)}, Y^{(q)}\right] \cdot L_{0} X-\mathrm{D}_{Y} P_{-} \Phi_{p q}\left[X^{(p)}, Y^{(q)}\right] L_{-} Y \\
& \quad=N_{p q}\left[X^{(p)}, Y^{(q)}\right]+P_{-} R_{p q}\left[X^{(p)}, Y^{(q)}\right] \tag{17}
\end{align*}
$$

where $R_{p q}$ is known. Since in (17) there is no restriction on $N_{p q}$, we can choose any $P_{-} \Phi_{p q}$, for instance 0, and then (17) gives directly $N_{p q}$. Now the eqs. (15) and (16) are explicitly soluble. They lead to

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[\mathrm{e}^{L_{-} t} P_{-} \Phi_{p 0}\left[\left(\mathrm{e}^{-L_{0} t} X\right)^{(p)}\right]\right]=\mathrm{e}^{L_{-} t} P_{-} R_{p 0}\left[\left(\mathrm{e}^{-L_{0} t} X\right)^{(p)}\right], \tag{18}\\
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[\mathrm{e}^{-L_{0} t} P_{0} \Phi_{p q}\left[\left(\mathrm{e}^{L_{0} t} X\right)^{(p)},\left(\mathrm{e}^{L_{-} t} Y\right)^{(q)}\right]\right]=-\mathrm{e}^{-L_{0} t} P_{0} R_{p q}\left[\left(\mathrm{e}^{L_{0} t} X\right)^{(p)},\left(\mathrm{e}^{L_{-} t} Y\right)^{(q)}\right],
\end{align*}
$$

hence

$$
\begin{align*}
& P_{-} \Phi_{p 0}\left[X^{(p)}\right]=-\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{L_{-} t} P_{-} R_{p 0}\left[\left(\mathrm{e}^{-L_{0} t} X\right)^{(p)}\right], \\
& P_{0} \Phi_{p q}\left[X^{(p)}, Y^{(q)}\right]=\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-L_{0} t} P_{0} R_{p q}\left[\left(\mathrm{e}^{L_{0} t} X\right)^{(p)},\left(\mathrm{e}^{L_{-} t} Y\right)^{(q)}\right], \quad q>0, \tag{19}
\end{align*}
$$

where the integrals are convergent, due to the exponential decay of $\mathrm{e}^{L_{-} t}$ as $t \rightarrow \infty$.
Next we need to solve eq. (14) with F_{p} as "simple as possible". This equation takes the form

$$
\begin{equation*}
\left[P_{0} \Phi_{p 0}\left[X^{(p)}\right], L_{0} X\right]=P_{0} R_{p 0}\left[X^{(p)}\right]+F_{p}\left[X^{(p)}\right] \tag{20}
\end{equation*}
$$

where the left-hand side is the Poisson-Lie bracket of two vector fields in E_{0}. Note that (20) is called the "homological equation" in the standard mathematical literature [3, 10].

Remark 3. Looking at (17) we might think about the possibility of choosing $N_{p q}$ as simple as possible, by choosing suitably $\boldsymbol{P}_{-} \Phi_{p q}$. This equation is also a "homological equation", slightly more complicated than (20). It is shown in $[3,10]$ that the linear operator acting on $P_{-} \Phi_{p q}$ has eigenvalues given by the following combinations:

$$
\lambda_{k}^{(-)}-\sum_{r} p_{r} \lambda_{r}^{(0)}-\sum_{l} q_{l} \lambda_{l}^{(-)},
$$

where $\lambda_{k}^{(0)}$ and $\lambda_{k}^{(-)}$are the eigenvalues of L_{0} and L_{-}, respectively, p_{r} and q_{l} are integers such that $\sum_{r} p_{r}=p, \Sigma_{l} q_{l}=q$.

If 0 is not an eigenvalue, we can choose $N_{p q}=0$. We cannot avoid 0 to be an eigenvalue for $q=1$, but if the following "non-resonant conditions" are realized:

$$
\begin{equation*}
\lambda_{k}^{(-)} \neq \sum_{r} p_{r} \lambda_{r}^{(0)}+\sum_{l} q_{l} \lambda_{l}^{(-)} \tag{21}
\end{equation*}
$$

for any k, r, l such that

$$
2 \leq \sum_{r} p_{r}+\sum_{l} q_{l} \leq P-1, \quad \sum_{l} q_{l} \neq 1
$$

then we can find

$$
\begin{equation*}
N(X, Y) \text { linear in } Y, \text { up to order }(|X|+|Y|)^{P} . \tag{22}
\end{equation*}
$$

Nevertheless, we have to stress that these conditions are impossible to check in the infinite dimensional case, since L_{-}has in general infinitely many eigenvalues.

2.2. Simple characterization of the normal form

In this section we solve (14) (or (20)) with the simplest possible F_{p}. Let us introduce some useful notations. We denote by H_{k} the vector space of homogeneous polynomials of degree k in $X \in E_{0}$, taking values in E_{0}. We denote by \mathscr{H}_{k} the space and scalar homogeneous polynomials of degree k in $X \in E_{0}$. We can then write

$$
\begin{equation*}
H_{k}=\mathscr{H}_{k} \otimes E_{0} . \tag{23}
\end{equation*}
$$

Note that the eq. (14) is in fact a linear equation of the form

$$
\begin{equation*}
\mathscr{A}^{(k)}\left(P_{0} \Phi_{k 0}\right)=P_{0} R_{k 0}+F_{k} \tag{24}
\end{equation*}
$$

in H_{k}. Thus the right-hand side of (24) has to belong to the image of $\mathscr{A}^{(k)}$ in H_{k}. This gives a condition for F_{k} which may be chosen in a complementary space of this image. The idea in what follows is to choose a suitable scalar product in the space H_{k}, allowing a simple computation of the adjoint operator of $\mathscr{A}^{(k)}$. Since the kernel of the adjoint $\mathscr{A}^{(k) *}$ is a complementary space of image $\left(\mathscr{A}^{(k)}\right)$, a good choice is to take F_{k} belonging to this space.

In what follows we choose a real basis of E_{0} and write $X=\left(x_{1}, \ldots, x_{N}\right)$. For two scalar polynomials P and Q, let us define

$$
\begin{equation*}
\langle P \mid Q\rangle=\left.P(\partial) Q(X)\right|_{X=0} \tag{26}
\end{equation*}
$$

where ∂_{j} means $\partial / \partial x_{j}$. For instance we have

$$
\left\langle x^{\alpha} \mid x^{\beta}\right\rangle=\frac{\partial^{\alpha}}{\partial x^{\alpha}}\left(x^{\beta}\right)=\alpha!\delta_{\alpha \beta}
$$

where $\delta_{\alpha \beta}$ is the Kronecker symbol. Now $\langle P \mid Q\rangle$ defines a scalar product on the space of scalar polynomials in X. We write it symbolically

$$
\begin{equation*}
\langle P \mid Q\rangle=\left.P(\partial) Q(X)\right|_{X=0} . \tag{26}
\end{equation*}
$$

This scalar product was introduced in quantum mechanics and studied in particular by Bargmann [4],
explicited by using the standard L^{2} scalar product. This basic property is that

$$
\begin{equation*}
\langle Q R \mid P\rangle=\left.Q(\partial) R(\partial) P(X)\right|_{X=0}=\left.R(\partial) Q(\partial) P(X)\right|_{X=0}=\langle R \mid Q(\partial) P\rangle, \tag{27}
\end{equation*}
$$

i.e. multiplication by the polynomial Q is the adjoint of the differentiation by $Q(\partial)$.

The corresponding scalar product in \mathscr{H}_{k} is obtained by taking homogeneous polynomials P and Q of degree k. We can now endow the space H_{k} of vector polynomials with the natural scalar product

$$
\begin{equation*}
(V \mid W)_{H_{k}}=\sum_{j=1}^{N}\left\langle V_{j} \mid W_{j}\right\rangle \tag{28}
\end{equation*}
$$

where $V=\left(V_{1}, \ldots, V_{N}\right)$ and $W=\left(W_{1}, \ldots, W_{N}\right) \in H_{k}$ and V_{j}, W_{j} are homogeneous polynomials of degree k in $X=\left(x_{1}, \ldots, x_{N}\right)$.

Let us consider a linear invertible operator A in E_{0}; we then have for any polynomials P and Q,

$$
\begin{equation*}
\langle P(A X) \mid Q(X)\rangle=\left\langle P(X) \mid Q\left(A^{*} X\right)\right\rangle . \tag{29}
\end{equation*}
$$

In fact, if we set $Y=A^{*} X$, it is easy to see that $\partial_{X}=A \partial_{Y}$, hence the right-hand side of (29) is just

$$
\left.P\left(A \partial_{Y}\right) Q(Y)\right|_{Y=0}=\left\langle P_{0} A \mid Q\right\rangle
$$

Now, by construction of the scalar product in H_{k}, we have for any V and W in H_{k},

$$
\begin{equation*}
\left(A^{-1} V(A X) \mid W(X)\right)_{H_{k}}=\left(V(A X) \mid A^{*-1} W(X)\right)_{H_{k}}=\left(V(X) \mid A^{*-1} W\left(A^{*} X\right)\right)_{H_{k}} \tag{30}
\end{equation*}
$$

where we used (29) to get the last identity.
Let us choose $A=\mathrm{e}^{L_{0} t}$ in (30), then we have

$$
\begin{equation*}
\left(\mathrm{e}^{-L_{0} t} V\left(\mathrm{e}^{L_{0} t} X\right) \mid W(X)\right)_{H_{k}}=\left(V(X) \mid \mathrm{e}^{-L^{*} t} W\left(\mathrm{e}^{L \delta t} X\right)\right)_{H_{k}}, \tag{31}
\end{equation*}
$$

where we have used the elementary result

$$
\left(\mathrm{e}^{L_{0} t}\right)^{*}=\mathrm{e}^{L_{0}^{*} t} .
$$

Now differentiating (31) with respect to t, at $t=0$, we readily obtain

$$
\begin{equation*}
\left(\mathscr{A}^{(k)} V \mid W\right)_{H_{k}}=\left(V \mid \mathscr{A}_{*}^{(k)} W\right)_{H_{k}}, \tag{32}
\end{equation*}
$$

where

$$
\begin{align*}
{\left[\mathscr{A}_{*}^{(k)} W\right]\left[X^{(k)}\right] } & =L_{0}^{*} W\left[X^{(k)}\right]-\mathrm{D}_{X} W\left[X^{(k)}\right] \cdot L_{0}^{*} X \\
& =\left[W\left[X^{(k)}\right], L_{0}^{*} X\right] . \tag{33}
\end{align*}
$$

This identity shows that the adjoint of the homological operator $\mathscr{A}^{(k)}$ in H_{k}, built with L_{0}, is the
homological operator in H_{k} built with the adjoint L_{0}^{*}. So we have proved the following:
Theorem 1. The following decomposition holds for the space H_{k} of homogeneous vector polynomials of degree k in $X \in E_{0}$:

$$
H_{k}=\operatorname{Im} \mathscr{A}^{(k)} \oplus \operatorname{Ker} \mathscr{A}_{*}^{(k)}
$$

where

$$
\operatorname{Ker} \mathscr{A}_{*}^{(k)}=\left\{V \in H_{k} ; \mathrm{e}^{-L_{0}^{*} t} V\left[\left(\mathrm{e}^{L_{0}^{*} t} X\right)^{(k)}\right]=V\left[X^{(k)}\right], \quad \forall t \in \mathbb{R}, \forall X \in E_{0}\right\} .
$$

Summing up this result for all p, we obtain:
Theorem 2. General characterization of the normal form. A normal form $F(X)$ of the nonlinear terms of (7) can be found such that F commutes with $\exp \left(L_{0}^{*} t\right), t \in \mathbb{R}$, where L_{0}^{*} is the adjoint of L_{0} in the invariant subspace E_{0}. An equivalent characterization is the partial differential system

$$
\begin{equation*}
\mathrm{D}_{X} F(X) \cdot L_{0}^{*} X-L_{0}^{*} F(X)=0 \tag{34}
\end{equation*}
$$

Remark. We note, after (31), (32), that

$$
\begin{equation*}
\left[\exp \left(\mathscr{A}_{*}^{(k)} t\right) \cdot V\right]\left[X^{(k)}\right]=\mathrm{e}^{L_{0}^{*} t} V\left[\left(\mathrm{e}^{-L_{0}^{*} t} X\right)^{(k)}\right] \tag{35}
\end{equation*}
$$

It is an elementary result that

$$
\left\{\exp \left(\mathscr{A}_{*}^{(k)} t\right) \cdot V \text { independent of } t\right\} \sim\left\{V \in \operatorname{Ker} \mathscr{A}_{*}^{(k)}\right\} .
$$

Corollary 2. If L_{0} is diagonalizable, then

$$
\operatorname{Ker}\left(\mathscr{A}_{*}^{(k)}\right)=\operatorname{Ker}\left(\mathscr{A}^{(k)}\right)
$$

and a normal form may be found such that it commutes with $\exp \left(L_{0} t\right), t \in \mathbb{R}$.
Proof. If L_{0} is diagonal in a suitable basis (complexified E_{0}), then $L_{0}^{*}=-L_{0}$. Hence the result is obvious.
Example. Let us assume that L_{0} has two pairs of simple pure imaginary eigenvalues $\pm i \omega_{0}, \pm i \omega_{1}$, and let us define $X=\left(z_{0}, \bar{z}_{0}, z_{1}, \bar{z}_{1}\right)$. The components of the normal form are sums of monomials of the form $z_{0} p \bar{z}_{0} z_{1}^{r} \bar{z}_{1}^{s}$. It is easy to see that

$$
\mathrm{e}^{L{ }_{0}^{L} t} X=\left(\mathrm{e}^{-\mathrm{i} \omega_{0} t} z_{0}, \mathrm{e}^{\mathrm{i} \omega_{0} t \bar{z}_{0}}, \mathrm{e}^{-\mathrm{i} \omega_{1} t} z_{1}, \mathrm{e}^{\mathrm{i} \omega_{1} t \bar{z}_{1}}\right)
$$

hence the commutation property of F,

$$
\begin{equation*}
\mathrm{e}^{-L_{\theta}^{*} t} F\left(\mathrm{e}^{L_{0}^{t} t} X\right)=F(X), \quad \forall t \in \mathbb{R}, \forall X \in E_{0}, \tag{36}
\end{equation*}
$$

leads, for its first component, to coefficients such that

$$
\begin{equation*}
\omega_{0}(p-q-1)+\omega_{1}(r-s)=0 \tag{37}
\end{equation*}
$$

and for the third component,

$$
\begin{equation*}
\omega_{0}(p-q)+\omega_{1}(r-s-1)=0 . \tag{38}
\end{equation*}
$$

We immediately see that if ω_{0} / ω_{1} is irrational, we only need to keep in the first component the coefficients such that $p=q+1, r=s$ and in the third one $r=s+1, p=q$. This shows that in this case the normal form is equivariant under the group T^{2}, and the trajectories $\left\{\mathrm{e}^{L_{0}^{* t}} X ; t \in \mathbb{R}\right\}$ are dense on the torus T^{2}.

Now, if $\omega_{0} / \omega_{1}=m / n$, where $(m, n)=1$ (m and n have no common divisor), then the coefficients of the first component of the normal form are such that

$$
\begin{equation*}
p=q+1+k n, \quad r=s-k m, \quad k \in \mathbb{Z} . \tag{39}
\end{equation*}
$$

This shows that the normal form (7) is (2 complex equations)

$$
\begin{align*}
& \frac{\mathrm{d} z_{0}}{\mathrm{~d} t}=\mathrm{i} \omega_{0} z_{0}+z_{0} P_{0}\left(z_{0} \bar{z}_{0}, z_{1} \bar{z}_{1}, z_{0}^{n} \bar{z}_{1}^{m}\right)+\bar{z}_{0}^{n-1} z_{1}^{m} P_{1}\left(z_{0} \bar{z}_{0}, z_{1} \bar{z}_{1}, \bar{z}_{0}^{n} z_{1}^{m}\right), \\
& \frac{\mathrm{d} z_{1}}{\mathrm{~d} t}=\mathrm{i} \omega_{1} z_{1}+z_{1} Q_{0}\left(z_{0} \bar{z}_{0}, z_{1} \bar{z}_{1}, \bar{z}_{0}^{n} z_{1}^{m}\right)+z_{0}^{n} \bar{z}_{1}^{m-1} Q_{1}\left(z_{0} \bar{z}_{0}, z_{1} \bar{z}_{1}, z_{0}^{n} \bar{z}_{1}^{m}\right), \tag{40}
\end{align*}
$$

where $P_{0}, P_{1}, Q_{0}, Q_{1}$ are polynomials in their arguments.
Hence the normal form is in this case invariant under the subgroup of $\mathrm{T}^{2}:\left(\theta_{0}, \theta_{1}\right) \rightarrow\left(\theta_{0}+m s, \theta_{1}+n s\right)$, $s \in \mathbb{R}\left(\sim \mathrm{~T}^{1}\right)$.

Remark. In this example, corollary 2 applies.
Another very fruitful way to compute the normal form $F(X)$ is to use the linear partial differential equation (34) satisfied by F. Choosing a basis in E_{0}, complex in general when we use the Jordan decomposition of L_{0}, this equation may be written more explicitely as follows:

$$
\begin{equation*}
\sum_{j, l=1}^{N} \frac{\partial F_{i}}{\partial x_{j}}(X) \bar{L}_{0 i j} x_{l}-\sum_{j=1}^{N} \bar{L}_{0 j i} F_{j}(X)=0, \quad i=1, \ldots, N . \tag{41}
\end{equation*}
$$

The characteristic system [20] associated with (41) is the following:

$$
\begin{equation*}
\frac{\mathrm{d} x_{j}}{\sum_{l} \bar{L}_{0 l j} x_{l}}=\frac{\mathrm{d} F_{i}}{\sum_{l} \bar{L}_{0 l i} F_{l}}, \quad i, j=1, \ldots, N \tag{42}
\end{equation*}
$$

and the characteristic curves are the trajectories in E_{0} defined by

$$
\left\{\mathrm{e}^{L * t} X ; t \in \mathbb{R}\right\} .
$$

So that, if we write (42) $=\mathrm{d} t$, we immediately recover (36).

Now, instead of computing $\exp \left(L_{0}^{*} t\right)$ and using (36), we can use the independent first integrals of (42). For this we need to put L_{0}^{*} into Jordan form (this also facilitates the computation of $\exp \left(L_{0}^{*} t\right)$). Then to compute the normal form we can use the following result:

Theorem 3. Representation of the normal form. The normal form $F(X)$ of theorem 2 may be made explicit as follows:

$$
\begin{equation*}
F(X)=\sum_{j=1}^{N} \alpha_{j}(X) \mathscr{L}_{j} X \tag{43}
\end{equation*}
$$

where $\mathscr{L}_{j}, j=1, \ldots, N$ are linear operators commuting with L_{0}^{*} in E_{0}, defined by (44), and the scalar functions $\alpha_{j}, j=1, \ldots, N$ are rational fractions, first integrals of the characteristic system $\mathrm{d} X / \mathrm{d} t=L_{0}^{*} X$.

Remark. It is easy to give a little more precise characterization of the rational fractions α_{j}. See the proof of the theorem above and Appendix A. 2 for the explicit form of the α_{j}.

Proof of theorem 3. Let us choose N linear operators $\mathscr{L}_{1}, \ldots, \mathscr{L}_{N}$ commuting with L_{0}^{*} (they then belong to $\operatorname{Ker} \mathscr{A}_{*}^{(1)}$) such that for almost all X, the system $\left\{\mathscr{L}_{j} X ; j=1, \ldots, N\right\}$ forms a basis of E_{0}. Assume that L_{0}^{*} is in Jordan form, with r blocks, each block $L_{0 j}^{*}$ corresponds to an eigenvalue $\lambda_{j}(\operatorname{Re} \lambda=0)$ and to an invariant subspace $E_{0 j}$. Define the projection P_{j} on $E_{0 j}$ such that

$$
\sum_{j=1}^{r} P_{j}=\operatorname{Id}_{E_{0}}
$$

and denote by ν_{j} the dimension of $E_{0 j}$. Then, the linear operators

$$
\begin{equation*}
P_{j},\left(L_{0 j}^{*}-\lambda_{j}\right) P_{j}, \ldots,\left(L_{0 j}^{*}-\lambda_{j}\right)^{v_{j}-1} P_{j}, \quad j=1, \ldots, r \tag{44}
\end{equation*}
$$

are N linearly independent linear operators \mathscr{L}_{k} commuting with L_{0}^{*}. It is easy to check, that if X has a nonzero first component in each $E_{0 j}$, then the system $\left\{\mathscr{L}_{j} X ; J=1, \ldots, N\right\}$ space E_{0}. We can then write (43) for almost all X in E_{0}.

Now, since

$$
L_{0}^{*} \mathscr{L}_{j}=\mathscr{L}_{j} L_{0}^{*}, \quad j=1, \ldots, N
$$

we also have

$$
\mathrm{e}^{L^{*} t} \mathscr{L}_{j}=\mathscr{L}_{j} \mathrm{e}^{L_{0}^{*} t}, \quad j=1, \ldots, N,
$$

hence the commutation relation of $F(36)$ with $\mathrm{e}^{L_{0}^{*} t}$ leads to

$$
\alpha_{j}\left(\mathrm{e}^{L_{0}^{*} t} X\right)=\alpha_{j}(X), \quad j=1, \ldots, N .
$$

So, the functions α_{j} are first integrals of the characteristic system. Now, $F(X)$ is a vector polynomial in X. Computing the decomposition (43) of $F(X)$ on the basis $\left\{\mathscr{L}_{j} X ; j=1, \ldots, N\right\}$ we easily observe that the
coefficients are rational fractions of the components of X whose denominators are powers $\leq \nu_{j}$ of the first component of each $E_{0 j}$ space (see Appendix A.2).

Remark A^{*}. The simple examples treated in section 2.4, all lead to the following type of normal form:

$$
\begin{equation*}
F(X)=\sum_{j} \beta_{j}(X) V_{j}+\sum_{j} \alpha_{j}(X) \mathscr{L}_{j} X, \tag{45}
\end{equation*}
$$

where the scalar functions α_{j} and β_{j} are polynomial first integrals of the characteristic system, and where $\left\{V_{j}\right\}$ are eigenvectors of L_{0}^{*} while $\left\{\mathscr{L}_{j}\right\}$ are all the linear operators commuting with $L_{0}^{*}\left(\operatorname{Ker} \mathscr{A}_{*}^{(1)}\right)$. In fact, theorem 3 shows that we can always find the α_{j} 's as rational fractions. For instance, in the normal form (40) the possible denominators are z_{0} and z_{1}. Note that if we want to express in this example the α_{j} 's as polynomials of the scalar invariants $z_{0} \bar{z}_{0}, z_{1} \bar{z}_{1}, z_{0}^{n} \bar{z}_{1}^{m}, \bar{z}_{0}^{n} z_{1}^{m}$ then the possible denominators are $z_{0} \bar{z}_{0}$ and $z_{1} \overline{\bar{z}}_{1}$. We shall see a more complicated example in Appendix A.2.

When (45) holds with polynomials α_{j} and β_{j}, it is possible to give an obvious physical interpretation: the effect of the nonlinearities is simply to renormalize the increasing rates, and linear coupling terms (see Arnol'd [3] for the affine normal form). This renormalization is done via scalars of the group $\exp \left(L_{0}^{*} t\right)$. It is nice that this holds for all low codimension examples given in section 2.4.

2.3. Case of an additional symmetry

Let us assume that the system (1) is invariant under the representation of some symmetry group. The simplest case is when we only have a symmetry $S \neq \mathrm{Id}$ such that $S^{2}=\mathrm{Id}$.

For the moment let us assume that we have a linear invertible operator T in E such that

$$
\begin{equation*}
\mathscr{F}(T Z)=T \mathscr{F}(Z) . \tag{46}
\end{equation*}
$$

Then T commutes with $\mathscr{L}, L_{0}, L_{-}$, and with any derivative of \mathscr{F} at the origin. Hence it is clear that T_{0} and $\mathscr{A}^{(k)}$ commutes in the following sense: let us define for any V in H_{k},

$$
T_{0 *} V\left[X^{(k)}\right]=T_{0}^{-1} V\left[\left(T_{0} X\right)^{(k)}\right], \quad T_{0}=\left.T\right|_{E_{0}}
$$

then it is easy to verify that

$$
T_{0 *} \mathscr{A}^{(k)}(V)=\mathscr{A}^{(k)} T_{0 *}(V)
$$

It follows that the image of $\mathscr{A}^{(k)}$ is invariant under $T_{0 *}$, as well as the kernel of $\mathscr{A}^{(k)}$.
Let us moreover assume that

$$
\begin{equation*}
T_{0}=\left.T\right|_{E_{0}} \text { is a unitary operator on } \mathrm{E}_{0}, \tag{47}
\end{equation*}
$$

i.e. $T_{0}{ }^{*}=T_{0}^{-1}$ on E_{0}, then T_{0} computes with L_{0}^{*} since

$$
T_{0}^{-1} L_{0}=L_{0} T_{0}^{-1} \quad \text { leads to } \quad L_{0}^{*} T_{0}=T_{0} L_{0}^{*} .
$$

As a consequence, on H_{k} the linear operator $T_{0 *}$ commutes with $\mathscr{A}_{*}^{(k)}$, hence the kernel of $\mathscr{A}_{*}^{(k)}$ as well
as the image of $\mathscr{A}^{(k)}$ are invariant under $T_{0 *}$, which commutes with the projection operators defined in theorem 1.

It results that the normal form defined in theorem 2 commutes also with T_{0}. We have proved the following theorem:

Theorem 4. If there exists a linear invertible operator T which commutes with the vector field \mathscr{F}, and if its representation T_{0} on the invariant subspace E_{0} belonging to the eigenvalues of zero real part is a unitary operator, then a normal form can be found which commutes with T_{0} as well as with $\mathrm{e}^{L_{0}^{* t}}, t \in \mathbb{R}$.

If all eigenvalues of L_{0} are semi-simple (L_{0} diagonalizable), the additional assumption on T_{0} is useless, because we can avoid to project orthogonally onto $\operatorname{Ker} \mathscr{A}_{*}^{(k)}$, by projecting in a more natural way on $\operatorname{Ker} \mathscr{A}^{(k)}$ which, in this case, is complementary to Image $\left(\mathscr{A}^{(k)}\right)$ (see [13]). The natural projection is then defined for any V in H_{k} by

$$
\begin{equation*}
P(V)=\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{0}^{\tau}\left(\mathrm{e}^{L_{0} t}\right)_{*} V \mathrm{~d} t \tag{48}
\end{equation*}
$$

We have just showed the following:
Corollary 4. In the case when L_{0} is diagonalizable, and if there exists a linear invertible operator T commuting with the vector field \mathscr{F}, then a normal form may be found which commutes with T_{0} as well as with the group $\mathrm{e}^{L_{0} t}, t \in \mathbb{R}$.

For an example with a symmetry and a non semi-simple eigenvalue see section 2.4.3.

2.4. Examples

Note that examples 2.4.1, 2.4.2, 2.4.3, 2.4.4 are also treated by Cushman and Sanders in [9], using a different, very elegant method. Our method is seen to lead to more elementary and shorter computations.
2.4.1. ζ^{2} singularity (see $[2,8]$)

We have

$$
L_{0}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

hence $X=(x, y)$ and $F(X)=\left(F_{1}(x, y), F_{2}(x, y)\right)$. Eq. (34) may be written as

$$
x \frac{\partial F_{1}}{\partial y}=0, \quad x \frac{\partial F_{2}}{\partial y}=F_{1} .
$$

This leads to the solution

$$
\begin{equation*}
F_{1}(x, y)=x \varphi_{1}(x), \quad F_{2}(x, y)=y \varphi_{1}(x)+\varphi_{2}(x) \tag{49}
\end{equation*}
$$

where φ_{1} and φ_{2} are polynomials (see Appendix A. 3 for the proof).

This normal form is in the frame of remark A^{*} of section 2.2, (see (45)) with

$$
F(X)=\beta(x)\binom{0}{1}+\alpha_{1}(x)\binom{x}{y}+\alpha_{2}(x)\binom{0}{x}
$$

and

$$
\varphi_{1}(x)=\alpha_{1}(x), \quad \varphi_{2}(x)=\beta(x)+\alpha_{2}(x)
$$

For terms of degree k, we obtain a subspace of H_{k} which is 2-dimensional:

$$
\begin{equation*}
\left(a x^{k}, a y x^{k-1}+b x^{k}\right) \tag{50}
\end{equation*}
$$

Note that we can change the normal form by choosing another projection (no longer orthogonal in H_{k}). In fact if we add to (50) the term ($-a x^{k}, k a x^{k-1} y$), which is orthogonal to $\operatorname{Ker} \mathscr{A}_{*}^{(k)}$ (hence it is in Image $\left(\mathscr{A}_{*}^{(k)}\right)$), this leads to a simpler normal form:

$$
\begin{equation*}
\left(0, a^{\prime} y x^{k-1}+b x^{k}\right) \tag{51}
\end{equation*}
$$

Hence it is possible to write (7) for this example in the form

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=y, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=x y P_{1}(x)+x^{2} P_{2}(x) \tag{52}
\end{equation*}
$$

where P_{1} and P_{2} are polynomials in x.

2.4.2. ζ^{3} singularity

This example is also treated in [9]. Here we have

$$
L_{0}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Let us denote by x_{1}, x_{2}, x_{3} the three components of X and by F_{1}, F_{2}, F_{3} the 3 components of F. Then (34) is written as follows:

$$
\begin{align*}
& x_{1} \frac{\partial F_{1}}{\partial x_{2}}+x_{2} \frac{\partial F_{1}}{\partial x_{3}}=0, \\
& x_{1} \frac{\partial F_{2}}{\partial x_{2}}+x_{2} \frac{\partial F_{2}}{\partial x_{3}}=F_{1} \tag{53}\\
& x_{1} \frac{\partial F_{3}}{\partial x_{2}}+x_{2} \frac{\partial F_{2}}{\partial x_{3}}=F_{2} .
\end{align*}
$$

Here, the characteristic system is

$$
\begin{equation*}
\frac{\mathrm{d} x_{1}}{0}=\frac{\mathrm{d} x_{2}}{x_{1}}=\frac{\mathrm{d} x_{3}}{x_{2}}=\frac{\mathrm{d} F_{1}}{0}=\frac{\mathrm{d} F_{2}}{F_{1}}=\frac{\mathrm{d} F_{3}}{F_{2}} \tag{54}
\end{equation*}
$$

and the first integrals are

$$
\begin{equation*}
x_{1}, \quad x_{2}^{2}-2 x_{1} x_{3}, \quad F_{1}, x_{1} F_{2}-x_{2} F_{1}, \quad x_{1} F_{3}+x_{3} F_{1}-x_{2} F_{2} . \tag{55}
\end{equation*}
$$

Hence, the general solution of (53) takes the form

$$
\begin{align*}
& F_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \varphi_{1}\left(x_{1}, x_{2}^{2}-2 x_{1} x_{3}\right), \\
& F_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{2} \varphi_{1}\left(x_{1}, x_{2}^{2}-2 x_{1} x_{3}\right)+x_{1} \varphi_{2}\left(x_{1}, x_{2}^{2}-2 x_{1} x_{3}\right), \tag{56}\\
& F_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{3} \varphi_{1}\left(x_{1}, x_{2}^{2}-2 x_{1} x_{3}\right)+x_{2} \varphi_{2}\left(x_{1}, x_{2}^{2}-2 x_{1} x_{3}\right)+\varphi_{3}\left(x_{1}, x_{2}^{2}-2 x_{1} x_{3}\right) .
\end{align*}
$$

It is not very hard to show that $\varphi_{j}, j=1,2,3$ are polynomials in their arguments (Appendix A.3), so we remark that (56) enters into the framework of remark A^{*} of section 2.2 , provided that we write

$$
\left(\begin{array}{c}
0 \\
0 \\
\varphi_{3}
\end{array}\right)=\beta(X)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+\alpha_{3}(X) \mathscr{L}_{3} X, \quad \mathscr{L}_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

where α_{3} and β are polynomials in X, ands $\mathscr{L}_{3} L_{0}^{*}=L_{0}^{*} \mathscr{L}_{3}$.
Here, like in example 2.4.1, we can change the projection, and choose a normal form such that (7) becomes

$$
\begin{align*}
& \frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=x_{2}, \quad \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=x_{3}, \tag{57}\\
& \frac{\mathrm{~d} x_{3}}{\mathrm{~d} t}=x_{3} P_{1}\left(x_{1}, x_{2}^{2}-2 x_{1} x_{3}\right)+x_{2} P_{2}\left(x_{1}, x_{2}^{2}-2 x_{1} x_{3}\right)+P_{3}\left(x_{1}, x_{2}^{2}-2 x_{1} x_{3}\right),
\end{align*}
$$

where $P_{j}, j=1,2$, are polynomials in their arguments starting at degree 1 , while P_{3} is a polynomial starting at degree 2 .

2.4.3. $\zeta^{2} \zeta^{2}$ singularity

This example is also treated in [9]. Their result, once simplified as in (62), is the same as ours. Here we have

$$
L_{0}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Let us denote by x_{j} and $F_{j}, j=1,2,3,4$ the components of X and of F in the normal form (7). Then the characteristic system (20) becomes

$$
\begin{equation*}
\frac{\mathrm{d} x_{1}}{0}=\frac{\mathrm{d} x_{2}}{x_{1}}=\frac{\mathrm{d} x_{3}}{0}=\frac{\mathrm{d} x_{4}}{x_{3}}=\frac{\mathrm{d} F_{1}}{0}=\frac{\mathrm{d} F_{2}}{F_{1}}=\frac{\mathrm{d} F_{3}}{0}=\frac{\mathrm{d} F_{4}}{F_{3}} . \tag{58}
\end{equation*}
$$

First integrals are given by

$$
\begin{equation*}
x_{1}, \quad x_{3}, \quad v=x_{2} x_{3}-x_{1} x_{4}, \quad F_{1}, \quad F_{3}, \quad x_{1} F_{2}-x_{2} F_{1}, \quad x_{3} F_{4}-x_{4} F_{3} . \tag{59}
\end{equation*}
$$

Hence, the general solution of (41) is here

$$
\begin{align*}
& F_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \varphi_{1}\left(x_{1}, x_{3}, v\right)+x_{3} \varphi_{2}\left(x_{1}, x_{3}, v\right), \\
& F_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{2} \varphi_{1}\left(x_{1}, x_{3}, v\right)+x_{4} \varphi_{2}\left(x_{1}, x_{3}, v\right)+\varphi_{3}\left(x_{1}, x_{3}\right), \tag{60}\\
& F_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{3} \varphi_{4}\left(x_{1}, x_{3}, v\right)+x_{1} \varphi_{5}\left(x_{1}, x_{3}, v\right), \\
& F_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{4} \varphi_{4}\left(x_{1}, x_{3}, v\right)+x_{2} \varphi_{5}\left(x_{1}, x_{3}, v\right)+\varphi_{6}\left(x_{1}, x_{3}\right) .
\end{align*}
$$

Since $\left\{F_{j} ; j=1,2,3,4\right\}$ are polynomials in $x_{1}, x_{2}, x_{3}, x_{4}$, it is not difficult to show that $\varphi_{j} ; j=1, \ldots, 6$ are polynomials in their arguments, i.e. in x_{1}, x_{3}, v or in x_{1}, x_{3}. This means that this normal form enters into the frame of remark A^{*} of section 2.2 , since

$$
\begin{align*}
& F(X)=\beta_{1}(X)\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+\beta_{2}(X)\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)+\alpha_{1}(X)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
0 \\
0
\end{array}\right)+\alpha_{2}(X)\left(\begin{array}{l}
0 \\
x_{1} \\
0 \\
0
\end{array}\right) \\
&+\alpha_{3}(X)\left(\begin{array}{l}
0 \\
0 \\
x_{3} \\
x_{4}
\end{array}\right)+\alpha_{4}(X)\left(\begin{array}{l}
0 \\
0 \\
0 \\
x_{3}
\end{array}\right)+\alpha_{5}(X)\left(\begin{array}{l}
x_{3} \\
x_{4} \\
0 \\
0
\end{array}\right)+\alpha_{6}(X)\left(\begin{array}{c}
0 \\
x_{3} \\
0 \\
0
\end{array}\right)+\alpha_{7}(X)\left(\begin{array}{l}
0 \\
0 \\
x_{1} \\
x_{2}
\end{array}\right)+\alpha_{8}(X)\left(\begin{array}{l}
0 \\
0 \\
0 \\
x_{1}
\end{array}\right), \tag{61}
\end{align*}
$$

where

$$
\begin{aligned}
& \alpha_{1}(X)=\varphi_{1}, \quad \alpha_{5}(X)=\varphi_{2}, \quad \alpha_{3}(X)=\varphi_{4}, \quad \alpha_{7}(X)=\varphi_{5}, \\
& \beta_{1}(X)+x_{1} \alpha_{2}(X)+x_{3} \alpha_{6}(X)=\varphi_{3}, \quad \beta_{2}(X)+x_{1} \alpha_{8}(X)+x_{3} \alpha_{4}(X)=\varphi_{6} .
\end{aligned}
$$

Now, as in examples 2.4.1 and 2.4.2, we can change the projection, and choose the following normal form for (7):

$$
\begin{align*}
& \frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=x_{2}, \\
& \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=x_{2} P_{2}\left(x_{1}, x_{3}, x_{2} x_{3}-x_{1} x_{4}\right)+x_{4} P_{2}\left(x_{1}, x_{3}, x_{2} x_{3}-x_{1} x_{4}\right)+Q_{1}\left(x_{1}, x_{3}\right), \tag{62}\\
& \frac{\mathrm{d} x_{3}}{\mathrm{~d} t}=x_{4}, \\
& \frac{\mathrm{~d} x_{4}}{\mathrm{~d} t}=x_{4} P_{3}\left(x_{1}, x_{3}, x_{2} x_{3}-x_{1} x_{4}\right)+x_{2} P_{4}\left(x_{1}, x_{3}, x_{2} x_{3}-x_{1} x_{4}\right)+Q_{2}\left(x_{1}, x_{3}\right),
\end{align*}
$$

where $P_{1}, P_{2}, P_{3}, P_{4}, Q_{1}, Q_{2}$ are polynomials in their arguments, P_{j} starting at degree 1 , and Q_{j} at degree 2.

Let us assume now that the vector field \mathscr{F} commutes with a symmetry S. Let us also assume that S is not trivial on E_{0} in the following sense: we can choose the eigenvectors of L_{0} such that they are exchanged by S, as well as the two generalized eigenvectors. The matrix of S in the same basis as for L_{0}, is now

$$
S=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

S is clearly a unitary operator on E_{0}, hence the results of section 2.3 apply. We can then find a normal form invariant under S by taking

$$
\begin{align*}
& P_{3}\left(x_{1}, x_{3}, x_{2} x_{3}-x_{1} x_{4}\right)=P_{1}\left(x_{3}, x_{1}, x_{1} x_{4}-x_{2} x_{3}\right), \\
& P_{4}\left(x_{1}, x_{3}, x_{2} x_{3}-x_{1} x_{4}\right)=P_{2}\left(x_{3}, x_{1}, x_{1} x_{4}-x_{2} x_{3}\right), \tag{63}\\
& Q_{2}\left(x_{1}, x_{3}\right)=Q_{1}\left(x_{3}, x_{1}\right)
\end{align*}
$$

2.4.4. ω^{2} singularity

This example is also treated in [9], where the normal form is written differently. The physical motivation of such a singularity is discussed in section 3.3.4. Here we have $(\omega \neq 0)$

$$
L_{0}=\left(\begin{array}{cccc}
\mathrm{i} \omega & 1 & 0 & 0 \\
0 & \mathrm{i} \omega & 0 & 0 \\
0 & 0 & -\mathrm{i} \omega & 1 \\
0 & 0 & 0 & -\mathrm{i} \omega
\end{array}\right)
$$

Let us write $X=\left(z_{1}, z_{2}, \bar{z}_{1}, \bar{z}_{2}\right)$ and $F=\left(F_{1}, F_{2}, \bar{F}_{1}, \bar{F}_{2}\right)$, then the characteristic system (42) becomes

$$
\begin{equation*}
\frac{\mathrm{d} z_{1}}{-\mathrm{i} \omega z_{1}}=\frac{\mathrm{d} z_{2}}{z_{1}-\mathrm{i} \omega z_{2}}=\frac{\mathrm{d} \bar{z}_{1}}{\mathrm{i} \omega \bar{z}_{1}}=\frac{\mathrm{d} \bar{z}_{2}}{\bar{z}_{1}+\mathrm{i} \omega \bar{z}_{2}}=\frac{\mathrm{d} F_{1}}{-\mathrm{i} \omega F_{1}}=\frac{\mathrm{d} F_{2}}{F_{1}-\mathrm{i} \omega F_{2}} . \tag{64}
\end{equation*}
$$

Now, first integrals are

$$
\begin{equation*}
z_{1} \bar{z}_{1}, \quad z_{1} \bar{z}_{2}-\bar{z}_{1} z_{2}, \quad i \omega z_{2} / z_{1}+\ln z_{1}, \quad \bar{z}_{1} F_{1}, \quad \bar{z}_{1} F_{2}-\bar{z}_{2} F_{1} . \tag{65}
\end{equation*}
$$

The general solution for F_{1} may then be written as follows:

$$
\begin{equation*}
F_{1}\left(z_{1}, z_{2}, \bar{z}_{1}, \bar{z}_{2}\right)=z_{1} \varphi_{1}\left(z_{1} \bar{z}_{1}, z_{1} \bar{z}_{2}-\bar{z}_{1} z_{2}, i \omega z_{2} / z_{1}+\ln z_{1}\right) . \tag{66}
\end{equation*}
$$

Using the fact that F_{1} is a polynomial, it is not very difficult to deduce that φ_{1} is a polynomial of $z_{1} \bar{z}_{1}, z_{1} \bar{z}_{2}-\bar{z}_{1} z_{2}$, moreover independent of its last argument. By an easy argument it can be shown that F_{2} takes the form predicted by remark A^{*} of section 2.2:

$$
\begin{equation*}
F_{2}\left(z_{1}, z_{2}, \bar{z}_{1}, \bar{z}_{2}\right)=z_{2} \varphi_{1}\left(z_{1} \bar{z}_{1}, z_{1} \bar{z}_{2}-\bar{z}_{1} z_{2}\right)+z_{1} \varphi_{2}\left(z_{1} \bar{z}_{1}, z_{1} \bar{z}_{2}-\bar{z}_{1} z_{2}\right), \tag{67}
\end{equation*}
$$

where φ_{2} is again a polynomial in its arguments. Finally, adapting the projection on a suitable space as we did in previous examples, we obtain

$$
\begin{align*}
& \frac{\mathrm{d} z_{1}}{\mathrm{~d} t}=\mathrm{i} \omega z_{1}+z_{2} \tag{68}\\
& \frac{\mathrm{~d} z_{2}}{\mathrm{~d} t}=\mathrm{i} \omega z_{2}+z_{1} \varphi_{1}\left(z_{1} \bar{z}_{1}, z_{1} \bar{z}_{2}-\bar{z}_{1} z_{2}\right)+z_{2} \varphi_{2}\left(z_{1} \bar{z}_{1}, z_{1} \bar{z}_{2}-\bar{z}_{1} z_{2}\right),
\end{align*}
$$

with φ_{1} and φ_{2} polynomials in their 2 arguments (see Appendix A.3). On this system it is tempting to make the following change of variables:

$$
y_{j}=\mathrm{e}^{-\mathrm{i} \omega t} z_{j}, \quad j=1,2 .
$$

Then we get in \mathbb{C}^{2},

$$
\begin{align*}
& \frac{\mathrm{d} y_{1}}{\mathrm{~d} t}=y_{2} \\
& \frac{\mathrm{~d} y_{2}}{\mathrm{~d} t}=y_{1} \varphi_{1}\left(y_{1} \bar{y}_{1}, y_{1} \bar{y}_{2}-\bar{y}_{1} y_{2}\right)+y_{2} \varphi_{2}\left(y_{1} \bar{y}_{1}, y_{1} \bar{y}_{2}-\bar{y}_{1} y_{2}\right) \tag{69}
\end{align*}
$$

which is a simpler autonomous second order differential equation.

3. Normal form of a vector field perturbed near a singularity

3.1. General computation

We consider now a system depending on a parameter $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right) \in \mathbb{R}^{m}$, of the form

$$
\begin{equation*}
\frac{\mathrm{d} Z}{\mathrm{~d} t}=\mathscr{F}(\mu, Z) \tag{70}
\end{equation*}
$$

where \mathscr{F} is supposed to be regular with respect to (μ, Z) in a neighbourhood of 0 in $\mathbb{R}^{m} \times E$. We assume, as before, that

$$
\begin{equation*}
\mathscr{F}(0,0)=0 \tag{71}
\end{equation*}
$$

and we write as in section 2.2

$$
\mathscr{L}=D_{Z} \mathscr{F}(0,0)
$$

where \mathscr{L} satisfies the same properties as in section 2 . We want to obtain a normal form for (70). The idea is to find polynomials $\Phi(\mu, X, Y), N(\mu, X, Y), F(\mu, X)$ such that F is as simple as possible and where we can write

$$
\begin{align*}
& Z=X+Y+\Phi(\mu, X, Y), \quad X \in E_{0}, Y \in E_{-} ; \tag{72}\\
& \frac{\mathrm{d} X}{\mathrm{~d} t}=L_{0} X+F(\mu, X)+\mathcal{O}\left[(|\mu|+|X|+|Y|)^{P}\right] \tag{73}\\
& \frac{\mathrm{d} Y}{\mathrm{~d} t}=L_{-} Y+N(\mu, X, Y)+\mathcal{O}\left[(|\mu|+|X|)^{P}\right] \\
& \Phi(\mu, X, Y)=\mathcal{O}\left(|\mu|+(|X|+|Y|)^{2}\right), \\
& N(\mu, X, Y)=\mathcal{O}[|Y|(|\mu|+|X|+|Y|)] \tag{74}\\
& F(\mu, 0)=\mathcal{O}(|\mu|), \quad \mathrm{D}_{X} F(0,0)=0 .
\end{align*}
$$

The estimate for Φ in $(74)_{1}$ is due to the absence of linear terms in Φ and to the fact that $\Phi(\mu, 0,0)=\mathcal{O}(|\mu|)$. The estimate for N in (74) ${ }_{2}$ means that the set $Y=0$ is invariant under the dynamics of (73) up to order $\mathcal{O}\left[(|\mu|+|X|)^{P}\right]$ and is an immediate consequence of $(80)_{4}$. In what follows we show that $F(\mu, X)$ can be chosen such that it commutes with $\exp \left(L_{0}^{*} t\right)$, just as in the case where there is no μ. In particular,

$$
\begin{equation*}
F(\mu, 0) \in \operatorname{Ker} L_{0}^{*} \tag{75}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{D}_{X} F(\mu, 0) \text { commutes with } L_{0}^{*} . \tag{76}
\end{equation*}
$$

In the following we shall often refer to the "normal form"

$$
\begin{equation*}
\frac{\mathrm{d} X}{\mathrm{~d} t}=L_{0} X+F(\mu, X) \tag{77}
\end{equation*}
$$

Remark 1. The manifold in E given by the equation

$$
\begin{equation*}
Z=X+\Phi(\mu, X, 0), \quad X \in E_{0} \tag{78}
\end{equation*}
$$

is the approximation at order $(|\mu|+|X|)^{P}$ of a center manifold for (70) (see remark 1 in section 2.1).
Remark 2. If $F(\mu, 0)=0$, the manifold in E given by

$$
\begin{equation*}
Z=Y+\Phi(\mu, 0, Y), \quad Y \in E_{-} \tag{79}
\end{equation*}
$$

is the approximation at order $(|\mu|+|Y|)^{P}$ of the stable manifold of the fixed point $X=Y=0$ for the system (73) without the terms of order P. If $F(\mu, 0) \neq 0$, this is not a fixed point and the manifold (79) has no special meaning for (70).

Let us now start by defining the Taylor expansions of all the functions introduced above, as in section 2.1 (same notations):

$$
\begin{align*}
& \mathscr{F}(\mu, z)=\sum_{p+q \geq 1} \mathscr{F}_{p q}\left[\mu^{(p)}, Z^{(q)}\right], \quad \mathscr{F}_{01}=\mathscr{L}, \\
& \Phi(\mu, X, Y)=\Phi_{100}[\mu]+\sum_{p+q+r \geq 2} \Phi_{p q r}\left[\mu^{(p)}, X^{(q)}, Y^{(r)}\right], \\
& F(\mu, X)=\sum_{\substack{p+q \geq 1 \\
(p, q) \neq(0,1)}}, F_{p q}\left[\mu^{(p)}, X^{(q)}\right], \tag{80}\\
& N(\mu, X, Y)=\sum_{\substack{p+q \geq 1 \\
r \geq 1}} N_{p q r}\left[\mu^{(p)}, X^{(q)}, Y^{(r)}\right] .
\end{align*}
$$

We now identify terms of the same degree in (μ, X, Y) in (70) where we replace Z by (72) and $\mathrm{d} X / \mathrm{d} t$, $\mathrm{d} Y / \mathrm{d} t$ by (73). For $r=0$ we obtain

$$
\begin{equation*}
\mathscr{L} \Phi_{p q 0}\left[\mu^{(p)}, X^{(q)}\right]-\mathrm{D}_{X} \Phi_{p q 0}\left[\mu^{(p)}, X^{(q)}\right] \cdot L_{0} X=F_{p q}\left[\mu^{(p)}, X^{(q)}\right]+R_{p q 0}\left[\mu^{(p)}, X^{(q)}\right] \tag{81}
\end{equation*}
$$

where $R_{p q 0}$ is a known function of $\Phi_{p^{\prime}-1, q^{\prime}+1,0}, \Phi_{p^{\prime}, q^{\prime}, 0}, F_{p^{\prime} q^{\prime}}$ with $p^{\prime} \leq p, q^{\prime} \leq q$ and $p^{\prime}+q^{\prime} \leq p+q-1$.

For $r \geq 1$, we obtain

$$
\begin{align*}
& \mathscr{L} \Phi_{p q r}\left[\mu^{(p)}, X^{(q)}, Y^{(r)}\right]-\mathrm{D}_{X} \Phi_{p q r}\left[\mu^{(p)}, X^{(q)}, Y^{(r)}\right] \cdot L_{0} X-\mathrm{D}_{Y} \Phi_{p q r}\left[\mu^{(p)}, X^{(q)}, Y^{(r)}\right] L_{-} Y \\
& \quad=N_{p q r}\left[\mu^{(p)}, X^{(q)}, Y^{(r)}\right]+R_{p q r}\left[\mu^{(p)}, X^{(q)}, Y^{(r)}\right] \tag{82}
\end{align*}
$$

where $R_{p q r}$ is a known function of $\Phi_{p^{\prime}-1, q^{\prime}+1, r^{\prime},} \Phi_{p^{\prime} q^{\prime} r^{\prime}}, F_{p^{\prime} q^{\prime}}, N_{p^{\prime} q^{\prime} r^{\prime}}$ with $p^{\prime} \leq p, q^{\prime} \leq q, r^{\prime} \leq r, p^{\prime}+q^{\prime}+r^{\prime}$ $\leq p+q+r-1$.

The strategy is first to compute the coefficients for $p=0$, and then to increase the values of $q+r$, starting with $q+r=2$, as in section 2.1.

We then compute for $p=1$, starting with $q+r=0$, and so forth computing for a fixed value of p all the needed coefficients by increasing the values of $q+r$, starting at 0 .

We note that $p=0$ gives the same computations as the ones of section 2.1. This determines $F_{0 q}, \Phi_{0 q r}, N_{0 q r}$ for any (q, r). Now, when $p \neq 0$, we remark that eqs. (81) and (82) have the same structure as (12), hence $F_{p q}$ will have the same structure as $F_{0 q}$, and the determination of $\Phi_{p q r}, p \geq 1$, is the same as for $\Phi_{0 q r}$, the arbitrariness on $N_{p q r}$ being the same as on $N_{0 q r}$.

Let us consider the special cases when $r=0$ and $q=0$ or $q=1$. If $q=r=0$, then (81) reduces to

$$
\begin{equation*}
\mathscr{L} \Phi_{p 00}\left[\mu^{(p)}\right]=F_{p 0}\left[\mu^{(p)}\right]+R_{p 00}\left[\mu^{(p)}\right] . \tag{83}
\end{equation*}
$$

We saw in section 2.2 that $F_{p 0}$ may be chosen in $\operatorname{Ker} \mathscr{A}_{*}^{(0)}$, and since $W \in H_{0}$ is independent of X,

$$
\operatorname{Ker} \mathscr{A}_{*}^{(0)}=\left\{W \in E_{0} ; L_{0}^{*} W=0\right\}=\operatorname{Ker} L_{0}^{*}=\operatorname{Ker} \mathscr{L}^{*} .
$$

Then, we recover a well-known result of linear algebra, i.e.

$$
F_{p 0} \in \operatorname{Ker} L_{0}^{*} \Leftrightarrow \mathrm{e}^{L_{0}^{*}} F_{p 0}=F_{p 0} .
$$

If $q=1, r=0$, then (81) reduces, once projected on E_{0}, to

$$
\begin{equation*}
L_{0} P_{0} \Phi_{p 10}\left[\mu^{(p)}, X\right]-P_{0} \Phi_{p 10}\left[\mu^{(p)}, L_{0} X\right]=F_{p 1}\left[\mu^{(p)}, X\right]+P_{0} R_{p 10}\left[\mu^{(p)}, X\right] \tag{84}
\end{equation*}
$$

We solve this equation by choosing $F_{p 1}$ in $\operatorname{Ker} \mathscr{A}_{*}^{(1)}$, and since $W \in H_{1}$ is a linear operator in E_{0} :

$$
\operatorname{Ker} \mathscr{A}_{*}^{(1)}=\left\{W \in \mathscr{L}\left(E_{0}\right), L_{0}^{*} W-W L_{0}^{*}=0\right\},
$$

i.e. $F_{p 1}$ commutes with the operator L_{0}^{*} (hence with $\exp L_{0}^{*} t$). We recover a known result (Arnol'd [3]). In this case for $V, W \in H_{1}$ we have in fact

$$
(V \mid W)_{H_{1}}=\operatorname{Tr}\left(V W^{*}\right)=\sum_{i j} V_{i j} W_{i j}
$$

and it is clear that

$$
\left(L_{0} V-V L_{0} \mid W\right)_{H_{1}}=\left(V \mid L_{0}^{*} W-W L_{0}^{*}\right) .
$$

We have then proved the following:
Theorem 5. Normal form of the perturbed vector field. A normal form $F(\mu, X)$ in (77) can be found such that (72)-(74) are satisfied and

$$
\begin{equation*}
F\left(\mu, \mathrm{e}^{L_{0}^{*} t} X\right)=\mathrm{e}^{L_{0}^{*} t} F(\mu, X), \quad X \in E_{0}, t \in \mathbb{R}, \tag{85}
\end{equation*}
$$

where L_{0}^{*} is the adjoint of L_{0} in E_{0}. In particular $F(\mu, 0)$ is in the kernel of L_{0}^{*} and $\mathrm{D}_{X} F(\mu, 0)$ commutes with L_{0}^{*}.

Remark 3. If L_{0} is diagonalizable then we can find a normal form $F(\mu, X)$ which commutes with $\exp \left(L_{0} t\right)$. (See corollary 2.)

Remark 4. In the case of an additional symmetry, the result of theorem 4 still holds for $F(\mu, X)$.
Remark 5. The form (73) of the system is very useful to study in a simpler way the dynamics of (70). Nevertheless the terms $\mathcal{O}\left[(|\mu|+|X|+|Y|)^{P}\right]$ may give rise to serious problems even for very large P. It is fortunate that these terms can be simplified in the case where 0 is not an eigenvalue of \mathscr{L}. We already know that $F(\mu, 0)=0$ by construction, but in fact we can prove the following:

Theorem 6. If 0 is not an eigenvalue of \mathscr{L}, then we can find a normal form of the perturbed vector field, of the same type as (72)-(74), but where $\mathcal{O}\left[(|\mu|+|X|+|Y|)^{P}\right]$ in $\mathrm{d} X / \mathrm{d} t$ is replaced by $\mathcal{O}\left[(|X|+|Y|)^{P}\right]$, and $F(\mu, 0)=0$.

The proof of this theorem is given in Appendix A.1.

3.2. Examples

Hereafter we consider the same examples as in section 2.4 , with an additional parameter $\mu=$ $\left(\mu_{1}, \ldots, \mu_{m}\right) \in \mathbb{R}^{m}$.

3.2.1. ζ^{2} singularity

The notations are the ones of section 2.4.1. The kernel of L_{0}^{*} is one-dimensional so we can redefine μ_{1} by setting

$$
F(\mu, 0)=\binom{0}{\mu_{1}}
$$

The linear operators which commute with L_{0}^{*} are

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and }\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

hence we can redefine the parameters in such a way that

$$
\begin{equation*}
F(\mu, X)=\binom{\mu_{2} x}{\mu_{1}+\mu_{3} x+\mu_{2} y}+\text { h.o.t. in } X . \tag{86}
\end{equation*}
$$

Remark 6. Here $\mu_{1}, \mu_{2}, \mu_{3}$ are in fact functions of the original $\mu \in \mathbb{R}^{m}$ not necessarily its three first components. These functions are at the leading order linear combinations of the components of μ. Finally changing the projection as in section 2.4.1, we obtain the normal form (77)

$$
\begin{align*}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=y \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=\mu_{1}+\mu_{3} x+\mu_{2} y+x y P_{1}(\mu, x)+x^{2} P_{2}(\mu, x) \tag{87}
\end{align*}
$$

where $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right)$ and P_{1} and P_{2} are polynomials in their arguments. Now, making a small translation in x, we can generically suppress the term $\mu_{3} x$: it is sufficient for that to have a non-small coefficient of x^{2} in (87). We then obtain the classical normal form [18, 2, 3]. Since there are two fundamental parameters μ_{1} and μ_{2} here, one says that this is a codimension 2 singularity. Other components of μ play a minor role, changing slightly the non linear coefficients.

3.2.2. ζ^{3} singularity (see [3] for the linear terms in X)

In the same way as above, it can be easily shown that the normal form is obtained by adding to (57) ${ }_{3}$ the affine terms (see Remark 6 for the redefinition of the μ_{j}).

$$
\begin{equation*}
\mu_{0}+\mu_{1} x_{1}+\mu_{2} x_{2}+\mu_{3} x_{3}, \tag{88}
\end{equation*}
$$

and by considering that the coefficients of polynomials $P_{j}, j=1,2,3$ are functions of μ. Moreover, as in 3.2.1, we can generically suppress $\mu_{1} x_{1}$ by making a small translation on x_{1}. In the same order of idea as in 3.1.1, we shall say that the ζ^{3} singularity has a codimension 3 (main parameters: $\mu_{0}, \mu_{2}, \mu_{3}$).

3.2.3. $\zeta^{2} \zeta^{2}$ singularity with an additional symmetry S

The kernel of L_{0}^{*} is two-dimensional, but due to the invariance under S we have here (redefining μ_{0})

$$
F(\mu, 0)=\mu_{0}\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)
$$

The kernel of $\mathscr{A}_{*}^{(1)}$ is 8 -dimensional, but thanks to the invariance under S we will have to add in $(62)_{2}$ and $(62)_{4}$ respectively (see [3] for the case of a non-symmetric linear part):

$$
\begin{align*}
& \mu_{0}+\mu_{1} x_{1}+\mu_{2} x_{2}+\mu_{3} x_{3}+\mu_{4} x_{4}, \\
& \mu_{0}+\mu_{3} x_{1}+\mu_{4} x_{2}+\mu_{1} x_{3}+\mu_{2} x_{4} . \tag{89}
\end{align*}
$$

In fact we can here again generically suppress μ_{1} and μ_{3}, by making a small translation in x_{1} and x_{3}, which commutes with S. Hence we have here a codimension 3 singularity, since the role of the other
components of μ just slightly modify the coefficients of polynomials P_{1}, P_{2} and Q_{1}. Note that without symmetry this singularity is of codimension 8.

3.2 .4 . ω^{2} singularity see $[5,9,10,16]$

We use the notations of section 2.4.4. The kernel of $\mathscr{A}^{(1)}{ }_{*}$ is 2 -dimensional with complex coefficients, hence 4 -dimensional with real coefficients. We have to add to $(68)_{2}$ the term

$$
\begin{equation*}
\mu_{1} z_{1}+\mu_{2} z_{2} \tag{90}
\end{equation*}
$$

on the right-hand side, where μ_{1} and μ_{2} are complex. Other components of μ occur in higher order terms, at least cubic, in the polynomials φ_{1} and φ_{2}.

In fact, the relevant parameters are $\operatorname{Re} \mu_{2}$ and $\mu_{2}^{2}+4 \mu_{1}$ (complex), hence we shall say that this singularity is of codimension 3: two parameters are necessary for having two pairs of eigenvalues crossing the imaginary axis simultaneously, and one parameter to have them crossing at the same point.

A special case is when we have a conservative system. This is well known in mechanical problems like the forced oscillations of a wing under the aerodynamical effect of the wind. Here $\operatorname{Re} \mu_{2}=0$ since volumes are conserved. Now, the interesting situation (Hamiltonian system) is when two pairs of pure imaginary eigenvalues, moving as a function of a real parameter, meet together at $\mu=0$. Then, they escape orthogonally from the imaginary axis. A unique real parameter μ is sufficient to describe such a singularity, which in this context is only of codimension one.

Acknowledgements

The authors wish to thank A. Cerezo, P. Chossat and F. Rouviere (Lab. of Mathematics of Nice University) for their constructive remarks. We also thank V. Arnol'd and one of the referees for bringing refs. [19] and [21], respectively, to our attention.

Appendix

A.1. Case when 0 is not an eigenvalue

Here we want to prove theorem 6. So, we assume that 0 is not an eigenvalue of L_{0}. A first consequence is the existence of a persisting fixed point $Z_{0}(\mu)$ regular function of μ. To compute it, it is sufficient to identify the powers of μ in

$$
\begin{equation*}
\mathscr{F}(\mu, Z)=0, \tag{91}
\end{equation*}
$$

where Z is replaced by

$$
\begin{equation*}
Z_{0}(\mu)=\sum_{p \geq 1} Z_{p}\left[\mu^{(p)}\right] \tag{92}
\end{equation*}
$$

and \mathscr{F} by $(80)_{1}$. With the notations of (72) we have

$$
\begin{equation*}
Z_{0}(\mu)=\Phi(\mu, 0,0) \tag{93}
\end{equation*}
$$

Let us now set $Z=Z_{0}(\mu)+\tilde{Z}$, then

$$
\begin{equation*}
\frac{\mathrm{d} \tilde{Z}}{\mathrm{~d} t}=\tilde{\mathscr{F}}(\mu, \tilde{Z}) \equiv \mathscr{F}\left(\mu, Z_{0}(\mu)+\tilde{Z}\right), \quad \tilde{\mathscr{F}}(\mu, 0)=0 . \tag{94}
\end{equation*}
$$

Let us denote by

$$
\begin{equation*}
\mathscr{L}_{\mu}=\mathrm{D}_{\bar{Z}} \tilde{\mathscr{F}}(\mu, 0)=\mathrm{D}_{Z} \mathscr{F}\left(\mu, Z_{0}(\mu)\right) . \tag{95}
\end{equation*}
$$

the derivative of \mathscr{F} at the fixed point. We want first to show how to decouple $X \in E_{0}$ and $Y \in E$. in the linear terms in \tilde{Z}. We remark that we want more than (73) since we do not want any more $\mathcal{O}\left(\left.|\mu|\right|^{P-1}|X|\right)$ terms in the right-hand side of $\mathrm{d} X / \mathrm{d} t$ and $\mathrm{d} Y / \mathrm{d} t$ (we already have no terms of $\mathcal{O}\left(|\mu|^{P}\right)$).

In fact we want to find linear operators $\Phi_{10}(\mu) \in \mathscr{L}\left(E_{0}, E\right)$ and $\Phi_{01}(\mu) \in \mathscr{L}\left(E_{-}, E\right)$ such that for any $X \in E_{0}$ and $Y \in E_{-}$we have

$$
\begin{equation*}
\mathscr{L}_{\mu}\left(X+Y+\Phi_{10}(\mu) X+\Phi_{01}(\mu) Y\right)=L_{\mu}^{(0)} X+L_{\mu}^{(-)} Y+\Phi_{10}(\mu) L_{\mu}^{(0)} X+\Phi_{01}(\mu) L_{\mu}^{(-)} Y \tag{96}
\end{equation*}
$$

where

$$
L_{\mu}^{(0)}=L_{0}+\mathscr{O}(|\mu|) \in \mathscr{L}\left(E_{0}\right)
$$

and

$$
L_{\mu}^{(-)}=L_{-}+\mathcal{O}(|\mu|) \in \mathscr{L}\left(E_{-}\right) .
$$

After projecting (96) on E_{0} and E_{-}, we obtain

$$
\begin{align*}
& P_{0} \Phi_{01} L_{\mu}^{(-)}-P_{0} \mathscr{L}_{\mu} P_{0} \Phi_{01}=P_{0} \mathscr{L}_{\mu} P_{-}+P_{0} \mathscr{L}_{\mu} P_{-} \Phi_{01} \tag{97}\\
& L_{\mu}^{(-)}+P_{-} \Phi_{01} L_{\mu}^{(-)}-P_{-} \mathscr{L}_{\mu} P_{-} \Phi_{01}=P_{-} \mathscr{L}_{\mu} P_{-}+P_{-} \mathscr{L}_{\mu} P_{0} \Phi_{01}
\end{align*}
$$

and

$$
\begin{align*}
& P_{-} \Phi_{10} L_{\mu}^{(0)}-P_{-} \mathscr{L}_{\mu} P_{-} \Phi_{10}=P_{-} \mathscr{L}_{\mu} P_{0}+P_{-} \mathscr{L}_{\mu} P_{0} \Phi_{10} \tag{98}\\
& L_{\mu}^{(0)}+P_{0} \Phi_{10} L_{\mu}^{(0)}-P_{0} \mathscr{L}_{\mu} P_{0} \Phi_{10}=P_{0} \mathscr{L}_{\mu} P_{0}+P_{0} \mathscr{L}_{\mu} P_{-} \Phi_{10} .
\end{align*}
$$

Since there is no restriction on $L_{\mu}^{(-)} \in \mathscr{L}\left(E_{-}\right)$, we can choose $P_{-} \Phi_{01}=0$, hence the system (97) reduces to

$$
\begin{equation*}
P_{0} \Phi_{01}\left(P_{-} \mathscr{L}_{\mu} P_{-}+P_{-} \mathscr{L}_{\mu} P_{0} \Phi_{01}\right)-P_{0} \mathscr{L}_{\mu} P_{0} \Phi_{01}=P_{0} \mathscr{L}_{\mu} P_{-} \quad \text { in } \mathscr{L}\left(E_{-}, E_{0}\right), \tag{99}
\end{equation*}
$$

where the only unknown is $P_{0} \Phi_{01}(\mu) \in \mathscr{L}\left(E_{-}, E_{0}\right)$.
We now observe that

$$
\begin{align*}
& P_{-} \mathscr{L}_{\mu} P_{-}=L_{-}+\mathcal{O}(|\mu|), \quad P_{0} \mathscr{L}_{\mu} P_{0}=L_{0}+\mathscr{O}(|\mu|), \tag{100}\\
& P \mathscr{L}_{\mu} P_{0}=\mathcal{O}(|\mu|), \quad P_{0} \mathscr{L}_{\mu} P_{-}=\mathscr{O}(|\mu|),
\end{align*}
$$

hence (99) takes the form

$$
g\left(P_{0} \Phi_{01}, \mu\right)=0 \quad \text { in } \mathscr{L}\left(E_{-}, E_{0}\right)
$$

where

$$
g(0,0)=0, \quad \mathrm{D}_{1} g(0,0) \cdot A=A L_{-}-L_{0} A \quad \text { in } \mathscr{L}\left(E_{-}, E_{0}\right)
$$

for any $A \in \mathscr{L}\left(E_{-}, E_{0}\right)$. We already saw that the linear operator $\mathrm{D}_{1} g(0,0)$ which acts in $\mathscr{L}\left(E_{-}, E_{0}\right)$ is invertible, since we computed explicitely its inverse in $(19)_{2}$ with $p=0, q=1$. Hence the implicit function theorem applies to solve (99), which means that we can compute, by identifying powers of μ, the solution $P_{0} \Phi_{01}(\mu)$.

Now, let us consider the system (98) where the unknown are $P_{-} \Phi_{10}$ and $P_{0} \Phi_{10}$ and where we want to find ($L_{\mu}^{(0)}-L_{0}$) commuting with L_{0}^{*}. We use theorem 1 to define the projections Π and (Id $-\Pi$), respectively, on Image $\mathscr{A}^{(1)}$ and $\operatorname{Ker} \mathscr{A}_{*}^{(1)}$. In fact we want

$$
\begin{equation*}
\Pi\left(L_{\mu}^{(0)}-L_{0}\right)=0, \tag{101}
\end{equation*}
$$

then the system 98) reduces to

$$
\begin{align*}
& P_{-} \Phi_{10}\left(\mathrm{Id}+P_{0} \Phi_{10}\right)^{-1}\left(P_{0} \mathscr{L}_{\mu} P_{0}+P_{0} \mathscr{L}_{\mu} P_{0} \Phi_{10}+P_{0} \mathscr{L}_{\mu} P_{-} \Phi_{10}\right) \\
& \quad-P_{-} \mathscr{L}_{\mu} P_{-} \Phi_{10}-P_{-} \mathscr{L}_{\mu} P_{0}-P_{-} \mathscr{L}_{\mu} P_{0} \Phi_{10}=0, \tag{102}\\
& \Pi\left\{\left(\mathrm{Id}+P_{0} \Phi_{10}\right)^{-1}\left(P_{0} \mathscr{L}_{\mu} P_{0}+P_{0} \mathscr{L}_{\mu} P_{0} \Phi_{10}+P_{0} \mathscr{L}_{\mu} P_{-} \Phi_{10}\right)-L_{0}\right\}=0 .
\end{align*}
$$

We again solve (102) by the implicit function theorem, by choosing $P_{0} \Phi_{10}$ in a supplementary space of $\operatorname{Ker} \mathscr{A}^{(1)}$ in $\mathscr{L}\left(E_{0}\right)$. It is not hard to check that the differential of the left-hand side of (102) with respect to $\left(P_{-} \Phi_{10}, P_{0} \Phi_{10}\right)$ at the point $0, \mu=0$, is for any $(A, B) \in \mathscr{L}\left(E_{0}, E_{-}\right) \times \mathscr{L}\left(E_{0}\right)$:

$$
\begin{equation*}
(A, B) \mapsto\left(A L_{0}-L_{-} A, L_{0} B-B L_{0}\right) . \tag{103}
\end{equation*}
$$

The linear operator (103) is invertible since for the first component we already computed the inverse in $(19)_{1}$ with $p=1$, and since for the second component we look for B in a supplementary space of Ker $\mathscr{A}^{(1)}$. Hence we can obtain $P_{0} \Phi_{10}(\mu)$ and $P_{-} \Phi_{10}(\mu)$ by identification of powers of μ in (102), so $L_{\mu}^{(0)}$ follows directly.

Having solved the problem for the linear terms, we can make the same analysis as in section 2.1, keeping μ at each step. We then obtain equations like (12), but with $\mathscr{L}_{\mu}, L_{\mu}^{(0)}, L_{\mu}^{(-)}$instead of $\mathscr{L}, L_{0}, L_{-}$, and $\Phi_{p q}$ depending on μ. We observe that (19) solves again the equations corresponding to (15), (16) since $\exp \left(\pm L_{\mu}^{(0)} t\right)$ increases slower than $\exp \left(L_{\mu}^{(-)} t\right)$ decreases, when $t \rightarrow+\infty$. The only remaining problem is with the homological equation

$$
\begin{equation*}
L_{\mu}^{(0)} P_{0} \Phi_{p 0}\left[\mu, X^{(p)}\right]-\mathrm{D}_{X} P_{0} \Phi_{p 0}\left[\mu, X^{(p)}\right] \cdot L_{\mu}^{(0)} X=F_{p}\left[\mu, X^{(p)}\right]+P_{0} R_{p}\left[\mu, X^{(p)}\right] \tag{104}
\end{equation*}
$$

Introducing the projections Π and $\mathrm{Id}-\Pi$, respectively, on Image $\mathscr{A}^{(p)}$ and on $\operatorname{Ker} \mathscr{A}_{*}^{(p)}$, and defining

$$
L_{\mu}^{(0)}=L_{0}+L_{\mu}^{(1)} \in \mathscr{L}\left(E_{0}\right) \quad \text { where } L_{\mu}^{(1)}=\mathcal{O}(|\mu|),
$$

eq. (104) reduces to

$$
\begin{equation*}
\mathscr{A}^{(p)} P_{0} \Phi_{p 0}+\Pi\left(\left[P_{0} \Phi_{p 0}\left[\mu, X^{(p)}\right], L_{\mu}^{(1)} X\right]\right)=\Pi P_{0} R_{p} \tag{105}
\end{equation*}
$$

Choosing a supplementary space of $\operatorname{Ker} \mathscr{A}^{(p)}$, this equation is uniquely solvable in $P_{0} \Phi_{p 0}$ since for $|\mu|$ small the linear operator acting on $P_{0} \Phi_{p 0}$ is a small perturbation of the now invertible operator $\mathscr{A}^{(p)}$. The other part of (104) leads to an F_{p} regular in μ :

$$
\begin{equation*}
F_{p}=(\Pi-\mathrm{Id})\left\{P_{0} R_{p}-\left[P_{0} \Phi_{p 0}\left[\mu, X^{(p)}\right], L_{\mu}^{(1)} X\right]\right\} \quad \text { in } \operatorname{Ker} \mathscr{A}_{*}^{(1)} . \tag{106}
\end{equation*}
$$

Hence theorem 6 is proved.

A. $2 \zeta^{3} \zeta^{2}$ singularity

In this appendix we consider an example which is less elementary than the one presented in section 2.4. Even though its codimension is 9 , (hence it is very improbable physically) it has the interest to give a counter-example to some a priori "reasonable" conjectures, for instance see remark A* in section 2.2.

- Here we have

$$
L_{0}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \tag{107}\\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

If we note $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=X$ and $\left(F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\right)=F$, and \mathscr{D}^{*} the differential operator defined by

$$
\begin{equation*}
\mathscr{D}^{*}=x_{1} \frac{\partial}{\partial x_{2}}+x_{2} \frac{\partial}{\partial x_{3}}+x_{4} \frac{\partial}{\partial x_{5}}, \tag{108}
\end{equation*}
$$

then the partial differential system (41) becomes

$$
\begin{equation*}
\mathscr{D}^{*} F_{1}=0, \quad \mathscr{D}^{*} F_{2}=F_{1}, \quad \mathscr{D}^{*} F_{3}=F_{2}, \quad \mathscr{D}^{*} F_{4}=0, \quad \mathscr{D}^{*} F_{5}=F_{4} . \tag{109}
\end{equation*}
$$

The characteristic system associated with (108) leads to the following 4 first integrals:

$$
\begin{equation*}
Z_{1}=x_{1}, \quad Z_{2}=x_{4}, \quad Z_{3}=x_{2}^{2}-2 x_{1} x_{3}, \quad Z_{4}=x_{2} x_{4}-x_{1} x_{5} \tag{110}
\end{equation*}
$$

Then F_{1} has to be a function of $Z_{1}, Z_{2}, Z_{3}, Z_{4}$. We want F_{1} to be a polynomial in ($x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$). This does not imply that it is a polynomial in $Z_{1}, Z_{2}, Z_{3}, Z_{4}$. A first nontrivial result is that F_{1} is in fact a polynomial in ($Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$) where [6, 21],

$$
\begin{equation*}
Z_{5}=x_{1} x_{5}^{2}+2 x_{3} x_{4}^{2}-2 x_{2} x_{4} x_{5} . \tag{111}
\end{equation*}
$$

We remark that $Z_{5}=\left(Z_{4}^{2}-Z_{2}^{2} Z_{3}\right) / Z_{1}$ is hence a first integral, polynomial of degree 3 in X but not polynomial in ($Z_{1}, Z_{2}, Z_{3}, Z_{4}$).

Eq. (109) ${ }_{1}$ can then be solved by setting

$$
\begin{equation*}
F_{1}=\varphi_{1}\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}\right) \tag{112}
\end{equation*}
$$

where φ_{1} is a polynomial in its arguments.

We want now to solve $(109)_{2}$. To wit let us write

$$
\begin{align*}
F_{1}= & x_{1} \psi_{1}\left(x_{1}, x_{4}, Z_{3}, Z_{4}, Z_{5}\right)+x_{4} \psi_{2}\left(x_{4}, Z_{3}, Z_{4}, Z_{5}\right)+Z_{4} \psi_{3}\left(Z_{3}, Z_{4}, Z_{5}\right) \\
& +Z_{5} \psi_{4}\left(Z_{3}, Z_{5}\right)+\psi_{5}\left(Z_{3}\right) \tag{113}
\end{align*}
$$

where $\left\{\psi_{j} ; j=1, \ldots, 5\right\}$ are polynomials in their arguments. The fact that F_{1} is in the image of \mathscr{D}^{*} will lead to $\psi_{4}=\psi_{5}=0$.

Remark. Working with the scalar product defined in (25), it is clear that the adjoint \mathscr{D} of \mathscr{D}^{*} is the differential operator

$$
\mathscr{D}=x_{2} \frac{\partial}{\partial x_{1}}+x_{3} \frac{\partial}{\partial x_{2}}+x_{5} \frac{\partial}{\partial x_{4}},
$$

whose kernel is formed by polynomials of the following type:

$$
P\left(x_{3}, x_{5}, x_{2}^{2}-2 x_{1} x_{3}, x_{2} x_{5}-x_{3} x_{4}, x_{3} x_{4}^{2}+2 x_{1} x_{5}^{2}-2 x_{2} x_{4} x_{5}\right) .
$$

So, the fact that F_{1} is orthogonal to any such polynomial leads to $\psi_{4}=\psi_{5}=0$.
The proof is not direct but also not very hard: let us write the solution F_{2} of $\mathscr{D}^{*} F_{2}=F_{1}$ under the form

$$
\begin{equation*}
F_{2}=x_{2} \psi_{1}+x_{5} \psi_{2}+q_{1} \psi_{3}+\frac{x_{2} Z_{5}}{x_{1}} \psi_{4}+\frac{x_{2}}{x_{1}} \psi_{5}+\varphi_{2}\left(x_{1}, x_{4}, Z_{3}, Z_{4}\right), \tag{114}
\end{equation*}
$$

where we only know that F_{2} is a polynomial in $\left(x_{1}, \ldots, x_{5}\right), \psi_{1}, \ldots, \psi_{5}$ are polynomials in their arguments and φ_{2} is a rational function of its 4 arguments. We use the properties

$$
\begin{equation*}
\mathscr{D}^{*} x_{2}=x_{1}, \quad \mathscr{D}^{*} x_{5}=x_{4}, \quad \mathscr{D}^{*} q_{1}=Z_{4}, \quad \mathscr{D}^{*}\left(\frac{x_{2} Z_{5}}{x_{1}}\right)=Z_{5}, \quad \mathscr{D}^{*}\left(\frac{x_{2}}{x_{1}}\right)=1 \tag{115}
\end{equation*}
$$

with $q_{1}=2 x_{3} x_{4}-x_{2} x_{5}$.
As a result of (114), we know that

$$
\begin{equation*}
Q=x_{2} Z_{5} \psi_{4}\left(Z_{3}, Z_{5}\right)+x_{2} \psi_{5}\left(Z_{3}\right)+x_{1} \varphi_{2}\left(x_{1}, x_{4}, Z_{3}, Z_{4}\right) \tag{116}
\end{equation*}
$$

is a polynomial, vanishing at $x_{1}=0$.
This leads to

$$
\begin{equation*}
x_{2} Z_{5} \psi_{4}\left(x_{2}^{2}, Z_{5}\right)+x_{2} \psi_{5}\left(x_{2}^{2}\right)+\varphi_{2}^{\prime}\left(0, x_{4}, x_{2}^{2}, x_{2} x_{4}, Z_{5}\right) \equiv 0, \tag{117}
\end{equation*}
$$

where we define $\varphi_{2}^{\prime}\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}\right)$ to be polynomial of its arguments equal to $x_{1} \varphi_{2}$ (we now know that it is a polynomial). Inspection of the monomials occurring in (117) immediately shows that $\psi_{4}=\psi_{5}=0$ and that Z_{1} is in factor in φ_{2}^{\prime}. We arrive at

$$
\begin{align*}
& F_{1}=x_{1} \psi_{1}+x_{4} \psi_{2}+Z_{4} \psi_{3} \tag{118}\\
& F_{2}=x_{2} \psi_{1}+x_{5} \psi_{2}+q_{1} \psi_{3}+x_{1} \chi_{1}+x_{4} \chi_{2}+Z_{4} \chi_{3}+Z_{5} \chi_{4}+x_{5}\left(Z_{3}\right)
\end{align*}
$$

where $\left\{\chi_{j}, j=1, \ldots, 5\right\}$ are polynomials of the same arguments as $\left\{\psi_{j}\right\}$.

Let us now consider eq. (109) ${ }_{3}$ and set as for F_{2},

$$
\begin{equation*}
F_{3}=x_{3} \psi_{1}+\frac{x_{5}^{2}}{2 x_{4}} \psi_{2}+\frac{q_{1}^{2}}{Z_{4}} \psi_{3}+x_{2} \chi_{1}+x_{5} \chi_{2}+q_{1} \chi_{3}+\frac{x_{2} Z_{5}}{x_{1}} \chi_{4}+\frac{x_{2}}{x_{1}} \chi_{5}+\varphi_{3}\left(x_{1}, x_{4}, Z_{3}, Z_{4}\right) \tag{119}
\end{equation*}
$$

We wish to show that ψ_{2} is divisible by x_{4}, ψ_{3} is divisible by Z_{4}, and $\chi_{4}=\chi_{5}=0$, and that φ_{3} is a polynomial. We observe that

$$
\begin{align*}
Q= & \frac{x_{5}^{2}}{2 x_{4}} \psi_{2}\left(x_{4}, Z_{3}, Z_{4}, Z_{5}\right)+\frac{q_{1}^{2}}{Z_{4}} \psi_{3}\left(Z_{3}, Z_{4}, Z_{5}\right)+\frac{x_{2} Z_{5}}{x_{1}} \chi_{4}\left(Z_{3}, Z_{5}\right) \\
& +\frac{x_{2}}{x_{1}} \chi_{5}\left(Z_{3}\right)+\varphi_{3}\left(x_{1}, x_{4}, Z_{3}, Z_{4}\right) \tag{120}
\end{align*}
$$

is a polynomial in $\left(x_{1}, \ldots, x_{5}\right)$. We deduce immediately that $x_{1} x_{4} Z_{4} \varphi_{3}\left(x_{1}, x_{4}, Z_{3}, Z_{4}\right)$ is a polynomial $\varphi_{3}^{\prime}\left(x_{1}, x_{4}, Z_{3}, Z_{4}, Z_{5}\right)$. Multiplying (120) by x_{4} and making $x_{4}=0$ shows that

$$
\begin{equation*}
\psi_{2}\left(0, Z_{3},-x_{1} x_{5}, x_{1} x_{5}^{2}\right)=0, \tag{121}
\end{equation*}
$$

hence x_{4} is in factor in ψ_{2}.
Multiplying (120) by Z_{4} and making $Z_{4}=0$ shows that

$$
\psi_{3}\left(Z_{3}, 0, Z_{5}\right)=0 \quad\left(\text { since } q_{1} \neq 0, \text { and } Z_{3}, Z_{5} \text { are still independent }\right),
$$

hence Z_{4} is in factor in ψ_{3}. Now we just make the same proof as above for ψ_{4} and ψ_{5}. Finally, we easily obtain (changing notations)

$$
\begin{align*}
& F_{1}=x_{1} \psi_{1}+x_{4}^{2} \psi_{2}+Z_{4}^{2} \psi_{3} \\
& F_{2}=x_{2} \psi_{1}+x_{4} x_{5} \psi_{2}+q_{1} Z_{4} \psi_{3}+x_{1} \chi_{1}+x_{4} \chi_{2}+Z_{4} \chi_{3}, \tag{122}\\
& F_{3}=x_{3} \psi_{1}+\frac{x_{5}^{2}}{2} \psi_{2}+\frac{q_{1}^{2}}{2} \psi_{3}+x_{2} \chi_{1}+x_{5} \chi_{2}+q_{1} \chi_{3}+\varphi_{3},
\end{align*}
$$

where ψ_{1}, χ_{1} are polynomials in $\left(x_{1}, x_{4}, Z_{3}, Z_{4}, Z_{5}\right), \psi_{2}$ and χ_{2} are polynomials in $\left(x_{4}, Z_{3}, Z_{4}, Z_{5}\right), \psi_{3}$ and χ_{3} polynomials in $\left(Z_{3}, Z_{4}, Z_{5}\right), \varphi_{3}$ is a polynomial in $\left(x_{1}, x_{4}, Z_{3}, Z_{4}, Z_{5}\right)$ and $q_{1}=2 x_{3} x_{4}-x_{2} x_{5}$.

We can compute in the same way the two last components of F :

$$
\begin{align*}
& F_{4}=x_{1} \theta_{1}+x_{4} \theta_{2}+Z_{4} \theta_{3}, \tag{123}\\
& F_{5}=x_{2} \theta_{1}+x_{5} \theta_{2}+q_{1} \theta_{3}+\varphi_{5},
\end{align*}
$$

where $\left\{\theta_{j}, j=1,2,3\right\}$ are polynomials of the same arguments as ψ_{j} and φ_{5} is a polynomial in $\left(x_{1}, x_{4}, Z_{3}, Z_{4}, Z_{5}\right)$.

Note that the normal form does not enter into the frame of remark A^{*} of section 2.2 since

$$
\psi_{3}\left(\begin{array}{c}
\left(x_{2} x_{4}-x_{1} x_{5}\right)^{2} \\
\left(2 x_{3} x_{4}-x_{2} x_{5}\right)\left(x_{2} x_{4}-x_{1} x_{5}\right) \\
\frac{1}{2}\left(2 x_{3} x_{4}-x_{2} x_{5}\right)^{2} \\
0 \\
0
\end{array}\right)+\psi_{2}\left(\begin{array}{c}
x_{4}^{2} \\
x_{4} x_{5} \\
x_{5}^{2} / 2 \\
0 \\
0
\end{array}\right)+\chi_{3}\left(\begin{array}{c}
0 \\
x_{2} x_{4}-x_{1} x_{5} \\
2 x_{3} x_{4}-x_{2} x_{5} \\
0 \\
0
\end{array}\right)+\theta_{3}\left(\begin{array}{c}
0 \\
0 \\
0 \\
x_{2} x_{4}-x_{1} x_{5} \\
2 x_{3} x_{4}-x_{2} x_{5}
\end{array}\right)
$$

is not contained in (45).

Finally let us give the explicit form for the rational fractions $\alpha_{j}, j=1, \ldots, 5$ characterizing the normal form of $\zeta^{3} \zeta^{2}$. From (43) we obtain

$$
\begin{align*}
& F_{1}=x_{1} \alpha_{1}, \\
& F_{2}=x_{2} \alpha_{1}+x_{1} \alpha_{2}, \\
& F_{3}=x_{3} \alpha_{1}+x_{2} \alpha_{2}+x_{1} \alpha_{3}, \tag{124}\\
& F_{4}=x_{4} \alpha_{4} \\
& F_{5}=x_{5} \alpha_{4}+x_{4} \alpha_{5} .
\end{align*}
$$

By equating (124) to (122) and (123) we obtain after some algebra the following expressions for the $\alpha_{j}, j=1, \ldots, 5$:

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{x_{1}}\left(x_{4}^{2} \psi_{2}+Z_{4}^{2} \psi_{3}\right)+\psi_{1}, \\
& \alpha_{2}=-\frac{1}{x_{1}^{2}}\left(x_{4} Z_{4} \psi_{2}+x_{4} Z_{4} Z_{3} \psi_{3}\right)+\frac{1}{x_{1}}\left(x_{4} \chi_{2}+Z_{4} \chi_{3}\right), \\
& \alpha_{3}=\frac{1}{2 x_{1}^{3}}\left[\left(Z_{4}^{2}+Z_{3} x_{4}^{2}\right) \psi_{2}+x_{4}^{2} Z_{3}^{2} \psi_{3}\right]-\frac{1}{x_{1}^{2}} Z_{4} \chi_{2}+\frac{1}{x_{1}}\left(x_{4} Z_{3} \chi_{3}+\varphi_{3}\right), \\
& \alpha_{4}=\frac{1}{x_{4}}\left(x_{1} \theta_{1}+Z_{4} \theta_{3}\right)+\theta_{2} \\
& \alpha_{5}=\frac{1}{x_{4}^{2}}\left(Z_{4} \theta_{1}+Z_{5} \theta_{3}\right)+\frac{1}{x_{4}} \varphi_{5}
\end{aligned}
$$

Therefore in accordance with theorem 3 the rational fractions for $\zeta^{3} \zeta^{2}$ are characterized by denominators $x_{1}^{P}, p \leq 3$, and $x_{q}^{q}, q \leq 2$, where the highest $p(q)$ is the dimension of the critical subspace associated with the $\zeta^{3}\left(\zeta^{2}\right)$ Jordan block.

4.3. (a) ζ^{2} singularity. Proof of (49)

Since eq. (34) leads to

$$
\begin{equation*}
x \frac{\partial F_{1}}{\partial y}=0, \quad x \frac{\partial F_{2}}{\partial y}=F_{1} \tag{125}
\end{equation*}
$$

we obtain that $F_{1}(x, y)=\varphi(x)$. Since F_{1} is a polynomial in (x, y) then φ is a polynomial in x. From $(125)_{2}$ we obtain

$$
\begin{equation*}
\frac{\partial F_{2}}{\partial y}=\frac{\varphi(x)}{x} \tag{126}
\end{equation*}
$$

which is a polynomial. Hence φ is divisible by x and can be written as

$$
\begin{equation*}
\varphi(x)=x \varphi_{1}(x) \tag{127}
\end{equation*}
$$

where φ_{1} is a polynomial in x. On solving (126) we obtain

$$
F_{2}(x, y)=y \varphi_{1}(x)+\varphi_{2}(x)
$$

and since F_{2} and $y \varphi_{1}(x)$ are polynomials, also φ_{2} is a polynomial.
(b) ζ^{3} singularity. Proof of (56)

Let us choose the new variables

$$
\begin{equation*}
u_{1}=x_{1}, \quad u_{2}=x_{2}^{2}-2 x_{1} x_{3}, \quad u_{3}=x_{2} \tag{128}
\end{equation*}
$$

and define $F_{j}\left(x_{1}, x_{2}, x_{3}\right)=\tilde{F}_{j}\left(u_{1}, u_{2}, u_{3}\right)$ is an obvious way. Then the partial differential system (53) can be written as

$$
\begin{equation*}
u_{1} \frac{\partial}{\partial u_{3}} \tilde{F}_{1}=0, \quad u_{1} \frac{\partial}{\partial u_{3}} \tilde{F}_{2}=\tilde{F}_{1}, \quad u_{1} \frac{\partial}{\partial u_{3}} \tilde{F}_{3}=\tilde{F}_{2} . \tag{129}
\end{equation*}
$$

Eq. (129) ${ }_{1}$ gives

$$
F_{1}\left(x_{1}, x_{2}, x_{3}\right)=\varphi\left(u_{1}, u_{2}\right)
$$

Since F_{1} is a polynomial in $\left(x_{1}, x_{2}, x_{3}\right)$ there exists $n \in \mathbb{Z}^{+}$such that

$$
\frac{\partial^{n} F_{1}}{\partial x_{3}^{n}} \equiv\left(-2 x_{1}\right)^{n} \frac{\partial^{n} \varphi}{\partial u_{2}^{n}}=0 .
$$

Hence it follows that φ is a polynomial in u_{2}. Therefore we can write

$$
F_{1}\left(x_{1}, x_{2}, x_{3}\right)=\sum_{k} F_{1 k}\left(x_{1}, x_{2}\right) x_{3}^{k}=\sum_{k} \varphi_{k}\left(u_{1}\right) u_{2}^{k}
$$

from which it follows trivially that $\varphi_{k}\left(u_{1}\right)$ is a polynomial in u_{1}. This proves that φ is a polynomial in (u_{1}, u_{2}) and can be written as $\varphi=u_{1} \varphi_{1}\left(u_{1}, u_{2}\right)+\psi_{1}\left(u_{2}\right)$ where $\psi_{1}\left(u_{2}\right)=\varphi\left(0, u_{2}\right)$.

On solving (129) ${ }_{2}$ for \tilde{F}_{2} we obtain

$$
\begin{equation*}
F_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{2} \varphi_{1}\left(u_{1}, u_{2}\right)+\frac{x_{2}}{u_{1}} \psi_{1}\left(u_{2}\right)+\frac{1}{u_{1}} \psi\left(u_{1}, u_{2}\right), \tag{130}
\end{equation*}
$$

where ψ is a polynomial in u_{1}, u_{2} (the proof is the same as the one given for φ). Multiplying (130) by u_{1} and making $u_{1}=0$ we obtain that ψ_{1} vanishes and that $\left(1 / u_{1}\right) \psi$ is a polynomial in (u_{1}, u_{2}). By writing $\psi / u_{1}=u_{1} \varphi_{2}\left(u_{1}, u_{2}\right)+\psi_{2}\left(u_{2}\right)$ we obtain

$$
\begin{equation*}
F_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{2} \varphi_{1}\left(u_{1}, u_{2}\right)+u_{1} \varphi_{2}\left(u_{1}, u_{2}\right)+\psi_{2}\left(u_{2}\right), \tag{131}
\end{equation*}
$$

where $\varphi_{2}\left(\psi_{2}\right)$ is a polynomial in $\left(u_{1}, u_{2}\right)\left(\left(u_{2}\right)\right)$.
Finally, eq. (129) ${ }_{3}$ leads to

$$
\begin{equation*}
F_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{3} \varphi_{1}\left(u_{1}, u_{2}\right)+x_{2} \varphi_{2}\left(u_{1}, u_{2}\right)+\frac{x_{2}}{u_{1}} \psi_{2}\left(u_{2}\right)+\frac{1}{u_{1}} \chi\left(u_{1}, u_{2}\right), \tag{132}
\end{equation*}
$$

where χ is a polynomial in (u_{1}, u_{2}) (see the proof of φ). Multiplying (132) by u_{1} and making $u_{1}=0$ we obtain $\psi_{2}=0$. Hence (56) has been proved. For the $\zeta^{2} \zeta^{2}$ singularity the proof is analogous to this one.
(c) ω^{2} singularity. Proof of (68)

Let us consider the new variables

$$
u_{1}=z_{1} \bar{z}_{1}, \quad u_{2}=z_{1} \bar{z}_{2}-\bar{z}_{1} z_{2}, \quad u_{3}=\mathrm{i} \omega \frac{z_{2}}{z_{1}}+\log z_{1}
$$

which are independent first integrals of the characteristic system (64).
From (64) we obtain [20]

$$
\begin{equation*}
F_{1}\left(z_{1}, z_{2}, \bar{z}_{1}, \bar{z}_{2}\right)=z_{1} \varphi\left(u_{1}, u_{2}, u_{3}\right) \tag{133}
\end{equation*}
$$

since $\bar{z}_{1} F_{1}$ is also a first integral. Let us prove that φ is a polynomial in (u_{1}, u_{2}) and independent of u_{3}.
First we note that

$$
\begin{align*}
& z_{1} \frac{\partial^{n} \varphi}{\partial u_{1}^{n}}=\left(\frac{z_{2}}{z_{1}^{2}} \frac{\partial}{\partial \bar{z}_{2}}+\frac{1}{z_{1}} \frac{\partial}{\partial \bar{z}_{1}}\right)^{n} F_{1}, \\
& z_{1} \frac{\partial^{n} \varphi}{\partial u_{2}^{n}}=\left(\frac{1}{z_{1}} \frac{\partial}{\partial \bar{z}_{2}}\right)^{n} F_{1}, \tag{134}\\
& z_{1} \frac{\partial^{n} \varphi}{\partial u_{3}^{n}}=\left(\frac{z_{1}}{i \omega} \frac{\partial}{\partial z_{2}}+\frac{\bar{z}_{1}}{i \omega} \frac{\partial}{\partial \bar{z}_{2}}\right)^{n} F_{1} .
\end{align*}
$$

Since F_{1} is a polynomial in $\left(z_{1}, z_{2}, \bar{z}_{1}, \bar{z}_{2}\right)$ it follows from (134) that φ is a polynomial in (u_{1}, u_{2}, u_{3}). Therefore φ is a sum of monomials $u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} u_{3}^{\alpha_{3}}$ which behaves as $z_{1}^{2 \alpha_{1}+\alpha_{2}}\left(\log z_{1}\right)^{\alpha_{3}}$ for $z_{1} \rightarrow \infty$ in \mathbb{R}^{+}. This is not possible for a polynomial in z_{1} except if $\alpha_{3}=0$. Finally we can write

$$
\begin{equation*}
F_{1}\left(z_{1}, z_{2}, \bar{z}_{1}, \bar{z}_{2}\right)=z_{1} \varphi_{1}\left(u_{1}, u_{2}\right) \tag{135}
\end{equation*}
$$

where φ_{1} is a polynomial in $\left(u_{1}, u_{2}\right)$.
Since $F_{2}-z_{2} \cdot \varphi_{1}\left(u_{1}, u_{2}\right)$ and F_{1} satisfy the same partial differential equation we immediately obtain (67) and therefore (68).

Note added in proof*

It is worthwhile remarking that the normal form for $\zeta^{3} \zeta^{2}$ instability (eqs. (122) and (123)) although is complete it is not written in its minimal form, that means that the coefficient of a given term is not uniquely determined (in other words the normal form contains some repeated terms). The non-minimality of our normal form comes from the fact that $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$ satisfy the relation $Z_{4}^{2}=Z_{1} Z_{5}+Z_{2}^{2} Z_{3}$. Therefore in order to obtain a minimal normal form we have to allow the functions $F_{1}, F_{2}, F_{3}, F_{4}, F_{5}$ to be

[^0]at most linear in Z_{4}. The minimal normal form is obtained as follows: we write
\[

$$
\begin{equation*}
F_{4}=\phi_{1}\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}\right)+Z_{4} \phi_{2}\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}\right) . \tag{136}
\end{equation*}
$$

\]

We easily find that ϕ_{1} is of the form $x_{1} \varphi_{1}\left(Z_{1}, Z_{2}, Z_{3}, Z_{5}\right)+x_{4} \varphi_{2}\left(Z_{1}, Z_{2}, Z_{3}, Z_{5}\right)$ since F_{4} must be in Image (\mathscr{D}^{*}). Hence it follows from (115) that

$$
\begin{align*}
& F_{4}=x_{1} \varphi_{1}+x_{4} \varphi_{2}+Z_{4} \phi_{2}, \\
& F_{5}=x_{2} \varphi_{1}+x_{5} \varphi_{2}+q_{1} \phi_{2}+\varphi_{3}\left(Z_{1}, Z_{2}, Z_{3}, Z_{5}\right) . \tag{137}
\end{align*}
$$

Similarly we write

$$
\begin{equation*}
F_{1}=\phi_{0}\left(Z_{1}, Z_{2}, Z_{3}, Z_{5}\right)+Z_{4} \psi_{0}\left(Z_{1}, Z_{2}, Z_{3}, Z_{5}\right) \tag{138}
\end{equation*}
$$

We note that we can always write

$$
\psi_{0}=x_{1} \psi_{1}\left(Z_{1}, Z_{2}, Z_{3}, Z_{5}\right)+\psi_{2}\left(Z_{2}, Z_{3}, Z_{5}\right)
$$

By imposing that $F_{1} \in \operatorname{Image}\left(\mathscr{D}^{*}\right)$ and $F_{1} \in \operatorname{Image}\left(\left(\mathscr{D}^{*}\right)^{2}\right)$ we easily conclude that ψ_{2} is divisible by x_{4}. Similar arguments show that ϕ_{0} has the form

$$
\begin{equation*}
\phi_{0}=x_{1} \psi_{3}\left(Z_{1}, Z_{2}, Z_{3}, Z_{5}\right)+x_{1} x_{4} \psi_{4}\left(Z_{1}, Z_{2}, Z_{3}, Z_{5}\right)+x_{4}^{2} \psi_{5}\left(Z_{2}, Z_{3}, Z_{5}\right) . \tag{139}
\end{equation*}
$$

Hence

$$
\begin{equation*}
F_{1}=x_{1} z_{4} \psi_{1}+x_{4} z_{4} \psi_{2}+x_{1} \psi_{3}+x_{1} x_{4} \psi_{4}+x_{4}^{2} \psi_{5} . \tag{140a}
\end{equation*}
$$

Using (115) and imposing $F_{2} \in \operatorname{Image}\left(\mathscr{D}^{*}\right)$ we obtain

$$
\begin{align*}
F_{2}= & x_{2} Z_{4} \psi_{1}+\left(x_{3} x_{4}^{2}-\frac{1}{2} x_{1} x_{5}^{2}\right) \psi_{2}+x_{2} \psi_{3}+\frac{1}{2}\left(x_{2} x_{4}+x_{1} x_{5}\right) \psi_{4}+x_{5} x_{4} \psi_{5} \\
& +x_{1} \psi_{6}\left(Z_{1}, Z_{2}, Z_{3}, Z_{5}\right)+x_{4} \psi_{7}\left(Z_{1}, Z_{2}, Z_{3}, Z_{5}\right), \tag{140b}\\
F_{3}= & x_{3} Z_{4} \psi_{1}+x_{5}\left(x_{3} x_{4}-\frac{1}{2} x_{2} x_{5}\right) \psi_{2}+x_{3} \psi_{3}+\frac{1}{2}\left(x_{2} x_{5}\right) \psi_{4}+\frac{1}{2} x_{5}^{2} \psi_{5} \\
& +x_{2} \psi_{6}+x_{5} \psi_{7}+\psi_{8}\left(Z_{1}, Z_{2}, Z_{3}, Z_{5}\right) . \tag{140c}
\end{align*}
$$

Although by construction the normal form defined by eqs. (137) and ($140 \mathrm{a}, \mathrm{b}, \mathrm{c}$) is minimal let us give an explicit proof of minimality. First we note that the normal form has the form $\sum_{j=1}^{12} f_{j} \boldsymbol{v}_{j} \equiv N$, where $f_{j} \in \operatorname{Ker}\left(\mathscr{D}^{*}\right)$ and $v_{j}, j=1,12$ are vectors satisfying eqs. (109). The normal form will be minimal if $N=0$ implies $f_{j}=0, \forall j=1,12$. To prove this statement we observe that if P, Q are polynomials in $Z_{1}, Z_{2}, Z_{3}, Z_{5}$, then*

$$
\begin{equation*}
P+Z_{4} Q=0 \Rightarrow P=Q=0 \tag{141}
\end{equation*}
$$

Writing the normal form in vector form we see that we have to prove that

$$
\begin{equation*}
\varphi_{1}\binom{x_{1}}{x_{2}}+\varphi_{2}\binom{x_{4}}{x_{5}}+\phi_{2}\binom{Z_{4}}{q_{1}}+\varphi_{3}\binom{0}{1}=\binom{0}{0} \tag{142}
\end{equation*}
$$

implies $\varphi_{1}=\varphi_{2}=\varphi_{3}=\phi_{2}=0$. Using (141) the first component of (142) gives $\phi_{2}=0, \varphi_{1}=x_{4} \varphi, \varphi_{2}=-x_{1} \varphi$ for some φ. Therefore the second component of (142) reads $\varphi_{3}+Z_{4} \varphi=0$ which by (141) leads to $\varphi_{3}=0$, $\varphi=0$. We also have to prove that $F_{1}=F_{2}=F_{3}=0$ implies $\psi_{j}=0, j=1, \ldots, 8$. Using (141) we obtain from
$F_{1}=0$ that

$$
\begin{align*}
& x_{1} \psi_{1}+x_{4} \psi_{2}=0 \tag{143a}\\
& x_{1} \psi_{3}+x_{1} x_{4} \psi_{4}+x_{4}^{2} \psi_{5}=0 \tag{143b}
\end{align*}
$$

Since ψ_{2} does not depend on x_{1} (143a) gives $\psi_{1}=\psi_{2}=0$. Similarly since ψ_{5} does not depend on x_{1} (143b) gives $\psi_{5}=0$ and

$$
\begin{equation*}
\psi_{3}=-x_{4} \psi_{4} . \tag{144}
\end{equation*}
$$

Using (144) the condition $F_{2}=0$ gives

$$
x_{1} \psi_{6}+x_{4} \psi_{7}-Z_{4} \psi_{4}=0
$$

which by (141) leads to

$$
\begin{equation*}
\psi_{4}=0, \quad \psi_{6}=-x_{4} \phi, \quad \psi_{7}=x_{1} \phi \tag{145}
\end{equation*}
$$

for some ϕ. Using (145) we obtain that $F_{3}=0$ reads

$$
\begin{equation*}
\psi_{8}-Z_{4} \phi=0 \tag{146}
\end{equation*}
$$

and therefore by (141) $\psi_{8}=\phi=0$ which finally proves the minimality of the normal form given by eqs. (137) and (140a, b, c).

References

[1] A. Arneodo, P. Coullet, C. Tresser and E.A. Spiegel, Asymptotic chaos, Physica D14 (1985) 327-347.
[2] V. Arnol'd, Lectures on bifurcations in versal families, Russ. Math. Surveys 27 (1972) 54-123.
[3] V. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, Berlin, 1977).
[4] V. Bargmann, On a Hilbert space a analytic functions and an associated integral transform I, Comm. Pure Appl. Math. 14 (1961) 187-214.
[5] S. Caprino, C. Maffei, P. Negrini, Hopf bifurcation at $1: 1$ resonance, Non-linear Anal., Theory, Methods Appl. 8,9 (1984) 1011-1032.
[6] A. Cerezo, Les invariants du groupe engendré par une matrice de Jordan, preprint Université de Nice (1986).
[7] J. Carr, Application of the Center Manifold Theory, Appl. Math. Sci., vol. 35 (Springer, Berlin, 1981).
[8] P. Coullet and E.A. Spiegel, Amplitude equations for systems with competing instabilities, SIAM J. Appl. Math. 43 (1983) 774-819.
[9] R. Cushman and J.A. Sanders, Nilpotent normal forms and representation theory of $\mathrm{sl}(2, \mathbb{R})$. Multi-parameter bifurcation theory, Arcata (July 1985) to be published.
[10] J.J. Duistermaat, Bifurcation of Periodic Solutions Near Equilibrium Points of Hamiltonian Systems, Bifurcation Theory and Applications, Lecture Notes in Math., vol. 1057 Salvadori, ed. (Springer, Berlin, 1984), pp. 57-105.
[11] J. Guckenheimer, and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., vol. 42 (Springer, Berlin, 1983).
[12] G. Iooss, Bifurcation of Maps and Applications, Math. Studies, vol. 36 (North-Holland, Amsterdam, 1979).
[13] G. Iooss, Reduction of the dynamics of a bifurcation problem using normal forms and symmetries, Proc. Valparaiso (Dec. 85), Tirapegui, ed. (Reidel, Dordrecht, to appear).
[14] T. Kato; Perturbation Theory for Linear Operators (Springer, Berlin, 1966).
[15] J. Marsden and M. McCraken, The Hopf Bifurcation and its Applications, Appl. Math., vol. 19 (Springer, Berlin, 1976).
[16] J.-C. van der Meer, The Hamiltonian Hopf Bifurcation, Lecture Notes in Math., vol. 1160 (Springer, Berlin, 1985).
[17] J.T. Stuart, Nonlinear stability theory, Ann. Rev. Fluid Mech. 3 (1971) 347-370.
[18] F. Takens, Singularities of vector fields, Publ. Math. IHES 43 (1974) 47-100.
[19] V.N. Bogaevskii and A. Ya. Povzner, A nonlinear generalization of the shearing transformation, Funct. Anal. Appl. 16 (1982) 45-46 (in Russian).
[20] F. John, Partial Differential Equations, Appl. Math. Sci., vol. 1 (Springer, Berlin, 1975).
[21] G. Salmon, Lessons introductory to the modern higher algebra (Dublin, 1859).

[^0]: *We thank one of the referees for having called our attention about the non-minimality of the normal form given by (122) and (123). We also thank the same referee for providing us the property (130) which was essential in the proof of minimality.

