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Abstract

We consider a Boussinesq system which describes three-dimensional water waves in a fluid layer with the depth being small with respect to
the wave length. We prove the existence of a large family of bifurcating bi-periodic patterns of traveling waves, which are non-symmetric with
respect to the direction of propagation. The existence of such bifurcating asymmetric bi-periodic traveling waves is still an open problem for the
Euler equation (potential flow, without surface tension).

In this study, the lattice of wave vectors is spanned by two vectors k1 and k2 of equal or different lengths and the direction of propagation c of
the waves is close to the critical value c0 which is a solution of the dispersion equation. The wave pattern may be understood at leading order as
the superposition of two planar waves of equal or different amplitudes, respectively, with wave vectors k1 and k2.

Our class of non-symmetric waves bifurcates from the rest state. The four components of the two basic wave vectors are constrained by the
dispersion equation, forming a 3-dimensional set of free parameters. Here we are able to avoid the small divisor problem by restricting the study
to propagation directions c such that (k1 · c)/(k2 · c) is any rational number close to (k1 · c0)/(k2 · c0). However, we need to solve a problem of
weak differentiability with respect to the propagation direction for the pseudo-inverse of the linear operator. It appears that the above rationality
condition influences only mildly the domain of existence of the bifurcating waves.

In the special case where the lattice is generated by wave vectors k1 and k2 of equal length, the bisecting direction is the critical propagation
direction c0, the parameter set is two-dimensional and the rationality condition gives bifurcating asymmetric waves which propagate in a direction
c at a small angle with the bisector of k1 and k2.

In the last section of the paper, we show examples of wave patterns for k1 and k2 of equal or different lengths, with various amplitude ratios
along the two basic wave vectors and with various angles between the traveling direction c and the critical direction c0.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the following Boussinesq system

ηt + ∇ · v + ∇ · (ηv) −
1
6
∆ηt = 0,

vt + ∇η +
1
2
∇(v · v) −

1
6
∆vt = 0,

(1)

∗ Corresponding author.
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gerard.iooss@unice.fr (G. Iooss).

proposed by Bona, Colin, Lannes [1], describing small-
amplitude gravity waves of an ideal, incompressible liquid
layer, with small depth relative to a characteristic wave length.
Here, the horizontal coordinate x and time t are scaled by
h0 and

√
h0/g, with g being the acceleration of gravity and

h0 being the average water depth. The elevation of waves
η(x, t) and the horizontal velocity v(x, t) at level

√
2/3h0

of the depth of the undisturbed fluid, are scaled by h0 and
√

gh0 respectively. The derivation of (1) is similar to its one-
dimensional version, which is given in detail in [2].

We are interested in traveling waves of constant velocity
c which have a periodic horizontal pattern in x ∈ R2. In

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.03.016



Author's personal copy

1540 M. Chen, G. Iooss / Physica D 237 (2008) 1539–1552

the paper [3] we considered diamond patterns Γ spanned
by wave vectors k1 and k2 having the same length and we
proved the existence of bifurcating symmetric solutions, where
the amplitudes ε1 and ε2 along the basic wave vectors are
equal, propagating in the direction of the bisector of the
wave vectors. We managed to apply the Lyapunov–Schmidt
method to the system above, which is impossible for the full
Euler equations without surface tension, due to a small divisor
problem (see [4]).

In the present work we consider asymmetric waves
experimentally produced by Hammack et al. in [5]. Assuming
the presence of surface tension, asymmetric waves were
theoretically predicted from the full Euler equation by Craig
and Nicholls in [6] (numerically sketched on page 631) using
Lyapunov–Schmidt reduction, and by Groves and Haragus in
[7] with the theory of spatial dynamics. As in [6,7] these waves
may result from a choice of pattern Γ spanned by two wave
vectors k1 and k2 having different lengths. They may also result
from a pattern Γ spanned by two wave vectors k1 and k2 having
the same length, but with different amplitudes ε1 and ε2 along
these basic wave vectors. In the absence of surface tension, the
above methods cannot apply, in particular because of a small
divisor problem.

In the present model, we don’t need to add surface tension
due to a fundamental factorization property of the dispersion
relation of the Boussinesq system (1). We are able to find a good
estimate of the inverse operator (see Lemma 8) provided that
we restrict the study to propagation directions c where the ratio
(k1 ·c)/(k2 ·c) is any rational number r/s close to the ratio (k1 ·

c0)/(k2 · c0), where c0 is the propagation velocity given by the
dispersion relation ∆(k j , c0) = 0. This allows us to avoid the
small divisor problem and use an adapted Lyapunov–Schmidt
type method, despite of the lack of regularity with respect to the
angle parameter (between c and c0) in the pseudo-inverse of the
linearized operator. This rationality condition influences mildly
the domain of existence of the bifurcating waves in allowing
an existence domain of the order (ln s)−1. Our main result is
Theorem 11, which can be roughly summed up as follows:

Theorem 1. Choose basic wave vectors (k1, k2) in the form
of (7) which satisfy the non-degeneracy condition (40), such
that the dispersion relation ∆(k, c0) = 0 defined in (18) with
c0 = c0(1, 0) has the only solutions k = ±k j , j = 1, 2, in
Γ (i.e., we have now only 3 free parameters). Then choose the
bifurcation parameter c such that the ratio

k1 · c
k2 · c

=
r

s
∈ Q+ (2)

is close enough to k1·c0
k2·c0

. Fix σ ∈ N large enough and assume
1 ≤ s ≤ σ . Then, there is a family of bifurcating bi-periodic
traveling waves, U = (η, v) which are solutions of (1),
are in general non-symmetric with respect to the propagation
direction c, and are of the form

U =

∑
1≤ j+l+m+q≤n

A j A
l
Bm B

q
U jlmq + o((|A| + |B|)n)

with

A = ε1eik1·y, B = ε2eik2·y.

The bifurcation parameter c =
c0

1+µ
(1, w) is linked with the

amplitudes ε1 and ε2 by

µ = α1ε
2
1 + α2ε

2
2 + O(ε2

1 + ε2
2)

2,

w = β1ε
2
1 + β2ε

2
2 + O(ε2

1 + ε2
2)

2.

The “rational” restriction (2) implies a “rational type of”
restriction on amplitudes (ε1, ε2) which are uniformly bounded
by O{(|µ|/ ln σ)1/2

} with |µ| � (ln σ)−1.

Remark 2. In the phases of A and B, y corresponds to an
arbitrary horizontal shift for the solution.

Remark 3. The “rational” restriction (2) concerns only w (not
µ).

Remark 4. The U jlmq are bi-periodic functions of x − ct . For
j +l +m+q less than or equal to 2, the functions U jlmq and the
coefficients αi , βi , i = 1, 2 are explicitly given in the Appendix.

In the case when the waves propagate in the critical direction
c0 the rationality restriction only concerns the ratio k1·c0

k2·c0
. The

result also applies when the lattice is built with wave vectors k1
and k2 of equal length, with the bisector direction as the critical
propagation direction c0. In such a case, the free parameter set is
two-dimensional and the rationality condition gives bifurcating
asymmetric waves which propagate in a direction making a
small angle with the bisector of k1 and k2. The factorization
property of the dispersion relation mentioned above is specific
to the Boussinesq system (1), while the corresponding problem
for the free surface of a potential flow in absence of surface
tension (Euler equations) is still open.

We show in Section 5 several patterns of traveling
asymmetric waves computed with the explicit expression of
the free surface elevation for the terms of order 1 and 2 in
amplitudes (ε1, ε2).

2. Formulation of the problem

We are looking for solutions of System (1) of the form of
2-dimensional traveling waves, i.e., η and v are functions of
x̃ = x − ct , where x = (x1, x2) ∈ R2, and c is the velocity of
the traveling wave which plays the role of a two-dimensional
bifurcation parameter. For these solutions, system (1) reads

∇ · (v + ηv) − c · ∇

(
η −

1
6
∆η

)
= 0,

∇

(
η +

1
2
(v · v)

)
− c · ∇

(
v −

1
6
∆v
)

= 0,

(3)

where we assume the flow is potential, i.e.,

curl(v) = 0, (4)

which is shown to be consistent with Euler equations in [3]. We
consider the periodic solutions with Fourier expansions of the
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form (for simplicity of notation, x is used for x̃)

η(x) =

∑
k∈Γ

ηkeik·x,

v(x) =

∑
k∈Γ

vkeik·x,
(5)

where Γ is a lattice in the plane defined by two non-colinear
vectors k1 and k2. This means that for k ∈ Γ , where

k = (k1, k2) = n1k1 + n2k2, n1, n2 ∈ Z. (6)

Because of (4) we have

vk × k = 0.

For simplicity, we require v0 = 0 and η0 = 0, so the averages
of the elevation η and of the horizontal velocity are set to be
zero. One might treat the nonzero case as in the case of the
symmetric doubly periodic wave pattern (c.f. [3]). This would
introduce 3 additional parameters which do not change the
results qualitatively.

Let us define the basis {k1, k2} of the lattice Γ by

k1 = l1(1, τ1), k2 = l2(1, −τ2), l j , τ j > 0, j = 1, 2, (7)

where τ j = tan θ j . We then have for k = (k1, k2) = n1k1 +

n2k2

k1 = n1l1 + n2l2, k2 = n1τ1l1 − n2τ2l2. (8)

The lattice Γ forms a diamond pattern if k1 and k2 are
symmetric with respect to the x1-axis, making an angle ±θ with
this axis. In such a case,

l1 = l2
def
= l, τ1 = τ2

def
= τ, θ1 = θ2

def
= θ.

Now we define the Sobolev space of bi-periodic functions
which are square integrable with their p first derivatives over a
period parallelogram:

H p
\\

def
=

{
u =

∑
k∈Γ

ukeik·x
∈ H p

{R2/Γ ′
}

}
,

where Γ ′ is the lattice of periods dual of Γ defined by

Γ ′
=

{
n1λ1 + n2λ2 ∈ R2

; λ j · kn = 2πδ jn,

j, n ∈ {1, 2}, (n1, n2) ∈ Z2
}

. (9)

We equip H p
\\ with the classical Hermitian product 〈·, ·〉H p .

Note that any u ∈ H p
\\ is invariant under the shift

σ : x 7→ x + λ j .

We notice that l j has to be chosen small enough for the
consistency of the Boussinesq model, in which the horizontal
wave lengths |λ j | should be large with respect to 1 (which
is the depth of the fluid layer at rest). Moreover, in the final
assumptions we also assume that the parallelogram built with
the vectors λ1 and λ2 is not too flat (see conditions on τ j and l j
in Definition 7). The basic function space in our study is

G p
def
={U = (η, v) ∈ H p

\\}
3
∩ {curl(v)= 0} ∩{η0 = 0, v0 = 0},

and system (3) can be reformulated in the form

LcU + GN (U, U ) = 0, (10)

where

LcU =

∇ · v − c · ∇

(
η −

1
6
∆η

)
∇η − c · ∇

(
v −

1
6
∆v
)
 , (11)

N (U, U ) =

(
1
2
(v · v), ηv

)
, G(g, f) = (∇ · f, ∇g).

It is clear that the linear maps

Lc : G p → G p−3, p ≥ 3; G : G p → G p−1, p ≥ 1

are bounded and the quadratic map

N : G p → G p, p ≥ 2

is bounded (p ≥ 2 is necessary for having the product of two
functions of H p

\\ in H p
\\). Moreover we have, for any U1 and

U2 ∈ G p,

〈LcU1, U2〉H0 = −〈U1,LcU2〉H0 , p ≥ 3

〈GU1, U2〉H0 = −〈U1,GU2〉H0 , p ≥ 1,
(12)

after integration by parts.

System (10) possesses important symmetries. We define
their representations by the following bounded linear operators
Tv and S0:

(TyU )(x) = U (x + y), (S0U )(x) = (η(−x), v(−x)).

It is clear that the following commutation properties hold

TyLc = LcTy, TyN (U, U ) = N (TyU, TyU ),

TyG = GT y,

S0Lc = −LcS0, S0N (U, U ) = N (S0U,S0U ),

S0G = −GS0.

(13)

The first three properties results from the invariance of the
original system under the translations of the plane, while the
rest comes from the reversibility of the original system.

If the lattice Γ has a diamond structure, we have an
additional symmetry. Define S1 by

(S1U )(x) = (η(x̂), v̂(x̂)),

where x̂ = (x1, −x2) is the symmetric vector of x with respect
to the x1-axis. It is clear that in the case when the velocity c
of the wave is colinear to the x1-axis, we have the following
additional commutation properties

S1Lc = LcS1, S1N (U, U ) = N (S1U,S1U ),

S1G = GS1.
(14)
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3. Study of the linearized operator

3.1. Inversion of the linear operator

To use the Lyapunov–Schmidt method, it is fundamental to
study the linear system

LcU = P, (15)

where P = (q, p) ∈ Gl (l ≥ 0) is given and we are looking
for U = (η, v) ∈ Gl with a periodic vector function p and a
periodic scalar function q with Fourier series

p(x, t) =

∑
k∈Γ

pkeik·x, p0 = 0, pk × k = 0,

q(x, t) =

∑
k∈Γ

qkeik·x, q0 = 0.
(16)

System (15) leads to

−

(
1 +

1
6
|k|

2
)

(c · k)ηk + k · vk = −iqk,

kηk −

(
1 +

1
6
|k|

2
)

(c · k)vk = −ipk,

(17)

where k ∈ Γ . Define

∆(k, c) =

(
1 +

1
6
|k|

2
)2

(c · k)2
− |k|

2. (18)

The linearized operator Lc has a nontrivial kernel in Gl if there
exists a pair (k0, c0) satisfying

∆(k0, c0) = 0 and k0 6= 0. (19)

The solution of (17) can be written as follows.

• When ∆(k, c) 6= 0, the solution reads

ηk = i
(1 +

1
6 |k|

2)(c · k)qk + k · pk

∆(k, c)
,

vk = i
(1 +

1
6 |k|

2)(c · k)pk + qkk

∆(k, c)
,

(20)

where we notice that

curl(vkeik·x) = 0.

• When k = 0, then v0 = η0 = 0.
• When ∆(k, c) = 0, k 6= 0, and if (pk, qk) satisfies the

compatibility condition

sgn(k · c)k · pk + |k|qk = 0, (21)

the solution reads

ηk = isgn(k · c)
qk

|k|
+ |k|β,

vk = sgn(k · c)kβ,

(22)

where β is an arbitrary constant in C.

3.2. Kernel of Lc0

To obtain bifurcating solutions we need to have a nontrivial
kernel for the operator Lc for some critical values of the

parameters. Hence we need to study the set

{k ∈ Γ ;∆(k, c) = 0}

for a given velocity c. Without loss of generality, we can assume
that c = c0 = c0(1, 0) and the basic wave vectors k1 and k2 are
solutions of

∆(k j , c0) = 0, j = 1, 2. (23)

This means that

c2
0 =

1 + τ 2
j

{1 +
l2

j
6 (1 + τ 2

j )}
2
, j = 1, 2, (24)

i.e.,

1

c2
0

=

(
cos θ1 +

l2
1

6 cos θ1

)2

=

(
cos θ2 +

l2
2

6 cos θ2

)2

,

0 < θ j < π/2, (25)

which leads to the relationship (automatically satisfied when we
choose a diamond lattice Γ )

6(cos θ1 − cos θ2) =
l2
2

cos θ2
−

l2
1

cos θ1
. (26)

Therefore, for fixed angles θ1, θ2, the point (l1, l2) (close to
0) needs to belong to a hyperbola in the plane. The critical
set in the 4-dimensional space (τ1, τ2, l1, l2) is a 3-dimensional
hypersurface restricted to the quadrant τ1, τ2, l1, l2 > 0. When
Γ is a diamond lattice, we only have two parameters (τ, l) for
the critical set.

Replacing k by n1k1 + n2k2 in the equation ∆(k, c0) = 0,
we obtain(

1 +
1
6
|n1k1 + n2k2|

2
)

|c0 · (n1k1 + n2k2)|

= |n1k1 + n2k2|, (27)

or, more explicitly,

0 =

(
1 +

1
6
{(n1l1 + n2l2)

2
+ (n1τ1l1 − n2τ2l2)

2
}

)2

× c2
0(n1l1 + n2l2)

2

− {(n1l1 + n2l2)
2
+ (n1τ1l1 − n2τ2l2)

2
}. (28)

We already know that

(n1, n2) = (±1, 0), (0, ±1),

are solutions of (27). Next we want to determine the number of
solutions (n1, n2) of (27).

When the equalities (24) hold, the critical set in the
4-dimensional space of parameters (τ1, τ2, l1, l2) is a 3-
dimensional hypersurface. When c0 is considered as a function
of τ1 and l1, then for a fixed pair (n1, n2), the Eq. (28)
represents a 2-dimensional submanifold: express for instance
(τ1, τ2) as a function of (l1, l2). The set of relations (28) is
countable for all (n1, n2) ∈ Z2. This yields a countable set
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of 2-dimensional submanifolds of the 3-dimensional critical
hypersurface. Therefore, there is a full measure set of choice
of parameters (τ1, τ2, l1, l2) on the 3-dimensional hypersurface
such that none of relations (28) is satisfied, except for
(n1, n2) = (±1, 0) and (n1, n2) = (0, ±1). Hence, a general
choice of parameters provides no solution of (27) except for
±k1 and ±k2. The consequence is that the dimension of kerLc0

is 4, in general.

Remark 5. In case of resonance, which means that the
dispersion equation ∆(k, c0) = 0 has more than the 4
solutions ±k1 and ±k2, the kernel of Lc0 is finite dimensional
as we shall see in the next two subsections. Hence for the
Boussinesq system (1), there is no possibility to have a
“complete resonance” (i.e. with an infinite-dimensional kernel)
as it might occur in the corresponding problem governed by
the Euler equations (see [4]). In the present paper we do not
consider resonant situations.

3.3. Inverse of Lc0 when l1/ l2 is rational

Let us assume that the scalars l1 and l2 are such that

l1
l2

=
r0

s0
∈ Q+, (29)

where r0 and s0 ∈ N are relatively prime. When c0 · k 6= 0, this
assumption gives a lower bound for c0 · k. Indeed, we have

c0 · k = c0(n1l1 + n2l2) =
c0l2
s0

(n1r0 + n2s0),

i.e.,

|c0 · k| ≥
c0l2
s0

for any (n1, n2) 6= 0 in Z2 with c0 · k 6= 0. It is then clear that,
for |k| > K where

K =
9s0

c0l2
,

and for any (n1, n2) 6= 0 in Z2 (even when c0 · k = 0),∣∣∣∣(1 +
1
6
|k|

2
)

|c0 · k| − |k|

∣∣∣∣ >
1
2
|k|, (30)

which provides a lower bound for |∆(k, c0)|. Notice that when
Γ is a diamond lattice, we have l1 = l2 = l and s0 = 1.

Let us now remark that

|k|
2

= (n1l1 + n2l2)
2
+ (n1τ1l1 − n2τ2l2)

2

is a positive definite quadratic form of (n1, n2), hence the
following inequality (d1 > 0)

d2
1 (n2

1 + n2
2) ≤ |k|

2
≤ d2

0 (n2
1 + n2

2) (31)

holds, where

d2
1 =

1
2

(
(1 + τ 2

1 )l2
1 + (1 + τ 2

2 )l2
2

)
−

1
2

√
∆,

∆ =

(
(1 + τ 2

1 )l2
1 + (1 + τ 2

2 )l2
2

)2
− 4l2

1l2
2(τ1 + τ2)

2.

(32)

For a > 0, we have a −
√

a2 − b2 > b2/2a, hence

d1 >
l1l2(τ1 + τ2)(

(1 + τ 2
1 )l2

1 + (1 + τ 2
2 )l2

2

)1/2 =
|k1 × k2|

(k2
1 + k2

2)
1/2

(33)

holds. This shows that for k ∈ Γ , the condition |k| ≤ K leads
to the condition

(n2
1 + n2

2)
1/2

≤
K

d1
,

where d1 satisfies (33), which means that there is only a finite
number of “bad” (n1, n2). Hence, in general, the parameters
(l j , τ j ) are not among the finite number of “bad” (resonant)
curves defined by conditions (28) and (29) on the 3-dimensional
manifold given by (24). We are now able to prove the following

Lemma 6. Let c = c0(1, 0),
l1
l2

=
r0
s0

∈ Q+, (c0, l1, l2, τ1, τ2)

satisfy

c2
0 =

1 + τ 2
1

{1 +
l2
1
6 (1 + τ 2

1 )}2
=

1 + τ 2
2

{1 +
l2
2
6 (1 + τ 2

2 )}2
,

such that ±k j , j = 1, 2 are the only solutions of the dispersion
relation ∆(k, c0) = 0 with k ∈ Γ . Then, for any given

P = (q, p) ∈ G p, p ≥ 0,

satisfying the compatibility conditions

〈P, ξ±k j 〉H0 = 0, j = 1, 2, (34)

the general solution U = (η, v) ∈ G p+1 of the system

Lc0U = P,

is given by

U = L̃−1
c0

P + Aξk1 + Aξ−k1 + Bξk2 + Bξ−k2 , (35)

where

ξ±k j = (

√
1 + τ 2

j , 1, (−1) j+1τ j )e±ik j ·x, (36)

A, B are complex numbers, and L̃−1
c0

is the bounded linear
operator: G p → G p+1 ∩ {kerLc0}

⊥

H0 for p ≥ 0, and there
is a positive ρ such that

‖L̃−1
c0
G‖L(G p) ≤ ρ. (37)

Proof. Assume that (c0, l j , τ j ), j = 1, 2, are such that
±k j , j = 1, 2, are the only nontrivial solutions in Γ of (27)
(this is the general case) and let us define the eigenvectors ξ±k j

of Lc0 by (36), where c0 = (c0, 0). Then we observe that
with the Hermitian scalar product in {H0

\\}
3 the compatibility

condition (21) is equivalent to (34). Moreover, using the
symmetries, we have

Tyξ±k j = ξ±k j e
±ik j ·y, S0ξ±k j = ξ±k j

= ξ∓k j . (38)

In the case when the lattice Γ has a diamond structure, we have
in addition the following symmetry property

S1ξ±k1 = ξ±k2 . (39)
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The above calculations (the proof of the estimates is made
in [3]) show that we are able to define an operator L̃−1

c0
, which

is the pseudo-inverse of Lc0 , mapping G p into G p+1 for any
p ≥ 0, provided the compatibility condition (21) is satisfied.
The componentwise definition of

U = L̃−1
c0

P

reads

{L̃−1
c0

P}k = Uk = (ηk, vk),

where

• {L̃−1
c0

P}k = (ηk, vk) is given by (20) for ∆(k, c0) 6= 0,
i.e. for k 6= ±k1, ±k2, and 0,

• {L̃−1
c0

P}0 = 0, for k = (0, 0),
• for k = ±k j we set (see (22))

{L̃−1
c0

P}±k j =

(
±

i
2

q±k j

|k j |
, −

i
2

±k j q±k j

|k j |
2

)
,

so that L̃−1
c0

P is orthogonal, in {H0
\\}

3, to the four-
dimensional space E = span{ξ±k j ; j = 1, 2}, i.e.

〈L̃−1
c0

P, ξ±k j 〉H0 = 0, j = 1, 2.

Notice that our pseudo-inverse operator L̃−1
c0

is defined even
if P = (q, p) does not satisfy the compatibility condition (21).

3.4. Inverse of the perturbed operator Lc0 + wL(1)

In what follows we need to consider the perturbed operator
Lc0(1,w) = Lc0 + wL(1) for w close to 0, where

L(1)U = −c0
∂

∂x2

(
I −

1
6
∆
)

U.

Taking w 6= 0 (which plays the role of an angular bifurcation
parameter) means that we intend to find traveling waves moving
not exactly in the direction of the x1-axis. We shall see that this
is linked with the ratio of amplitudes ε1 and ε2 of the waves
along the basic wave vectors k1 and k2. The perturbation wL(1)

appears to be singular as it leads to a small divisor problem
when we invert Lc0(1,w), contrary to the inversion of Lc0 with
the assumption (29). Indeed, the ∆(k, c) in the denominators of
(20) may become very small for large |k|. In what follows, we
control the smallness of ∆(k, c) by assuming again a rationality
condition. Let us first define a non-flatness condition of the
parallelograms generated by the vectors k1 and k2.

Definition 7. We say that (k1, k2) satisfies the δ-non-flatness
condition if for a fixed δ ∈ (0, 1),

δ < τ j < δ−1, j = 1, 2

δ <
l1
l2

< δ−1, l2 < δ.
(40)

This condition also insures that the parallelograms of the
dual lattice Γ ′ built with the vectors λ1 and λ2 are not flat and
their size is large with respect to 1 (which is the scale of the
depth of the fluid layer).

We now show the following

Lemma 8. Let c = c0(1, w), δ ∈ (0, 1), and choose basic wave
vectors (k1, k2) which satisfy the δ-non-flatness condition, such
that the dispersion relation ∆(k, c0) = 0 has the only solutions
k = ±k j , j = 1, 2, in Γ . Then choose |w| ≤

δ
5 and the ratio

k1 · c
k2 · c

=
r

s
∈ Q+, (41)

with r, s ∈ N being relatively prime. Then, except for τ2 in a
small neighborhood of a finite set τ2(τ1, l1, l2) of cardinality at
most O(ln s), the linear operator Lc has a bounded inverse in
the orthogonal complement of kerLc0 in G0, with the estimate

‖L̃−1
c G‖L(Gl ) ≤ c(s), l ≥ 0, (42)

where c(s) is bounded by γ ln s. Moreover, for any q ≥ 0

L̃−1
c = L̃−1

c0
+

∑
1≤n≤q

(−w)n(L̃−1
c0
L(1))nL̃−1

c0
+Rq(w), (43)

‖Rq(w)‖L(Gl ,Gl−2(q+1)+1) ≤ |w|
q+1γ q+1c(s),

where the linear operator L̃−1
c is computed in {kerLc0}

⊥

H0 ,

(L̃−1
c0
L(1))nL̃−1

c0
∈ L(Gl , Gl−2n+1), and γ > 0 is independent

of s.

Remark 9. We notice that the operator L̃−1
c G is bounded. This

is just what is needed to apply the Lyapunov–Schmidt method,
since the nonlinear terms take the form GN (U, U ), whereN is
a bounded quadratic operator.

Remark 10. We observe that the operator L̃−1
c in L(Gl , Gl+1)

is weakly differentiable in w at 0. Formula (43) gives precisely
the loss of regularity of the successive derivatives in w at the
origin (the loss is 2 at each increasing order). The difficulty
introduced by this non-smoothness is in fact not a problem for
the 4-dimensional bifurcation equation.

Proof. First, for any k = n1k1 + n2k2, n j ∈ Z, we have by
(41)

k1 · c
k2 · c

=
l1(1 + τ1w)

l2(1 − τ2w)
=

r

s
∈ Q+.

Hence

c · k = c0l2(1 − τ2w)
(

n1
r

s
+ n2

)
and if c · k 6= 0, we have

|c · k| ≥
c0d

s
, (44)

where d satisfies

d ≤ l2|1 − τ2w|.

In choosing w such that |w| ≤
δ
5 we can take d =

4l2
5 . Notice

that if c · k = 0, (20) yields

|ηk| + |vk| ≤
1
|k|

(|qk| + |pk|). (45)

Now, if c · k 6= 0, we have(
1 +

1
6
|k|

2
)

|c · k| − |k| ≥ |k|

{
|k|c0d

6s
− 1

}
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and for |k| ≥
7s

c0d we obtain(
1 +

1
6
|k|

2
)

|c · k| − |k| ≥
|k|

6
.

We then use the fundamental factorization of ∆(k, c):

∆(k, c) =

{(
1 +

1
6
|k|

2
)

|c · k| − |k|

}
×

{(
1 +

1
6
|k|

2
)

|c · k| + |k|

}
≥

|k|

6

{(
1 +

1
6
|k|

2
)

|c · k| + |k|

}
,

and (20) leads to the estimate

|ηk| + |vk| ≤
6
|k|

(|qk| + |pk|). (46)

We observe that if |k||c · k| > 7, (46) holds.
It remains to study the region R of the plane (n1, n2) where

|k| ≤
7s

c0d
, |k||c · k| ≤ 7, ∆(k, c) 6= 0, and

c · k 6= 0.

(47)

Using here the estimate (31), we observe that the region R is
included in the region A defined by

A ≤

(n1, n2) ∈ Z2
; n2

1 + n2
2 <

(
7s

c0dd1

)2

,

∣∣∣n2 +
r

s
n1

∣∣∣ ≤
7

c0dd1

√
n2

1 + n2
2

 .

The area of A in the plane (n1, n2) can be computed with polar
coordinates. We set

n1 = ρ cos θ, n2 = ρ sin θ,

ρ ≤ min

{(
7 cos θ0

c0dd1

)1/2

| sin(θ − θ0)|
−1/2,

7s

c0dd1

}
,

where

tan θ0 = −r/s, θ0 ∈ (−π/2, 0).

Estimating 2
∫ π/2
φ

ρ2(θ)dθ + 2φ( 7s
c0dd1

)2 for large s, for

ρ2(θ) =

(
7 cos θ0
c0dd1

)
| sin θ |

−1 and sin φ =
c0dd1 cos θ0

7s2 , yields

Area(A) =
14 cos θ0

c0dd1
ln
(

1
tan φ/2

)
+

98s2

(c0dd1)2 sin−1
(

c0dd1 cos θ0

7s2

)
∼

28 cos θ0

c0dd1
ln s.

We notice that, by construction, r/s is close to l1/ l2, hence
cos θ0 is close to l2√

l2
1+l2

2

and the following estimate holds

cos θ0

dd1
≤

5
(
(1 + τ 2

1 )l2
1 + (1 + τ 2

2 )l2
2

)1/2

4l1l2(l2
1 + l2

2)1/2(τ1 + τ2)
.

For τ2 < δ−1 the estimate for c0 (see (24)) is independent
of τ2 (but depends on l2 and δ), which shows that Area(A) ≤

γ0(ln s) with γ0 independent of s. Hence the number of points
(n1, n2) lying in A is of order ln s.

In what follows, it is useful to notice that for

|k|
2 >

7l2d2
0

l1c0dd1
,

we have

n2k2 < 0. (48)

To see this, we look at the intersection of the curve (in polar
coordinates)

ρ2
=

7 cos θ0

c0dd1
| sin(θ − θ0)|

−1

which bounds the region A, with the n1-axis (θ = 0). The
points of this curve with θ0 < θ < 0 are such that n1 > 0, n2 <

0. This shows that for points in the region of A such that

n2
1 + n2

2 >
7

c0dd1

s

r
,

n1 and n2 have opposite signs. Then in order to obtain (48)
we use (31), and observe that r/s is close to l1/ l2, and k2 =

n1l1τ1 − n2l2τ2 has the sign of n1.

Now, the equation(
1 +

1
6
|k|

2
)

|c · k| − |k| = 0

is equivalent to (28) with c2
0 replaced by its expression (24)

as a function of τ2 and l2, which makes for every “bad”
pair (n1, n2) a polynomial equation of degree 8 in τ2. Hence
we cannot have more than 8 roots τ2 > 0 for every “bad”
pair (n1, n2). This makes a finite set of “bad” values for
τ2 = τ

(p)

2 (τ1, l1, l2) of cardinality O(ln s). We then need to
exclude small neighborhoods of these roots to control the size
of the inverse of (1 +

1
6 |k|

2)|c · k| − |k|. Let us exclude
O(ln s) neighborhoods of these specific values of τ2. We may
choose, for each (n1, n2), neighborhoods of exclusions of size
O(ν/ ln s) around every such root τ2, with ν � 1, so there are
good values for the (τ2)’s remaining. Let us show that outside
these neighborhoods we have∣∣∣∣(1 +

1
6
|k|

2
)

|c · k| − |k|

∣∣∣∣ ≥
c|k|

ln s
, for large s. (49)

To show this, it is sufficient to show that the derivative of

g(τ2) =

(
1 +

1
6
|k|

2
)

|c · k| − |k|

with respect to τ2 at any root τ0 of (28) satisfies |g′(τ0)| >

c|k| for some c independent of s. Indeed, an elementary
computation gives

∂τ2 |c · k|

|c · k|

∣∣∣∣
τ2=τ0

= −
w

1 − τ0w
+ τ0

6 − l2
2(1 + τ 2

0 )

(1 + τ 2
0 )(6 + l2

2(1 + τ 2
0 ))
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hence

g′(τ0) = |k|

{
−n2l2k2

|k|2

(
|k|

2
− 6

|k|2 + 6

)
−

w

1 − τ0w

+ τ0
6 − l2

2(1 + τ 2
0 )

(1 + τ 2
0 )(6 + l2

2(1 + τ 2
0 ))

}
.

For

|k| > M, M = max

{
7l2d2

0

l1c0dd1
,
√

6

}
the inequality (48) shows that the first term on the right hand
side is positive. Moreover, for τ2 < δ−1, and |w| < δ/5, we
have∣∣∣∣ w

1 − τ2w

∣∣∣∣ <
δ

4
.

Taking l2 small enough, such that

l2 < 1, l2τ0 < 1

and remarking that τ2 < δ−1, we see that this condition holds
as soon as

l2 < δ < 1. (50)

We obtain l2
2(1 + τ 2

0 ) < 2, hence

6 − l2
2(1 + τ 2

0 )

6 + l2
2(1 + τ 2

0 )
>

1
2
,

and we conclude, (since δ < τ2 < 1/δ), that

τ0
6 − l2

2(1 + τ 2
0 )

(1 + τ 2
0 )(6 + l2

2(1 + τ 2
0 ))

>
δ

2(1 + δ2)

which is independent of s. We notice that

4 > 2(1 + δ2)

hence

g′(τ0) > |k|

{
δ

2(1 + δ2)
−

δ

4

}
= c|k|, c > 0.

In the region R where

|k| ≤ M,

the number of corresponding points of the plane (n1, n2) is
bounded by a finite number independent of s. To avoid the
corresponding bad values of τ2 near the corresponding roots,
we just need to avoid a fixed (independent of s) small ν

neighborhood of this finite number of roots, since the minimal
value of |g′(τ0)| at these roots is independent of s.

This ends the proof of the fact that in choosing τ2 outside a
small open set included in (δ, δ−1) and for |k| ≤

7s
c0d we obtain

(49). Finally, we find a constant γ > 0 independent of s such
that

|ηk| + |vk| ≤
γ ln s

|k|
(|qk| + |pk|). (51)

Now, collecting (45), (46), (51) we obtain an estimate valid for
all k such that k 6= ±k1, ±k2∣∣∣∣(1 +

1
6
|k|

2
)

|c · k| − |k|

∣∣∣∣ ≥
|k|

c(s)
,

and the required estimate (42) follows for L̃−1
c G. Property (12)

and

Gξ±k j
= ±il j

√
1 + τ 2

j ξ±k j (52)

imply that the subspace {kerLc0}
⊥

H0 is mapped into itself by
G. Notice that the dependency in s of the bound of the linear
operator L̃−1

c G is delicate to control, since the dangerous values
of (n1, n2) (for which we may have roots of (28)) are large ones,
and not so frequent in the set A.

To obtain the precise loss of differentiability indicated by
(43), we first observe that the subspace {kerLc0}

⊥

H0 is stable

under L(1) since we have property (12) and

L(1)ξ±k j = ±i(−1) j l jτ j

√
1 + τ 2

j ξ±k j . (53)

Then, for F ∈ {kerLc0}
⊥

H0 , the equation

LcU = (Lc0 + wL(1))U = F

leads to

U = L̃−1
c0

F + U1, LcU1 = −wL(1)L̃−1
c0

F,

which leads to (43) for q = 0. Writing now

U1 = −wL̃−1
c0
L(1)L̃−1

c0
F + U2,

LcU2 = w2L(1)L̃−1
c0
L(1)L̃−1

c0
F,

leads to (43) for q = 1. Then the result (43) follows for any q
and Lemma 8 is proved. �

4. Bifurcation equations

Let us introduce the set of two parameters (µ, w):

c =
c0

1 + µ
(1, w)

and notice that

LcU =
1

1 + µ

(
Lc0U + wL(1)U + µGU

)
,

which allows us to rewrite Eq. (10) as

Lc0U + µGU + (1 + µ)GN (U, U ) + wL(1)U = 0. (54)

Notice that this choice of parameters might be questionable.
However it has the benefit that all the bad (and interesting)
singularities are concentrated only in the linear term wL(1)U .
All other terms are ideal for a Lyapunov–Schmidt method
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(thanks to Lemma 6) and may be treated in a standard way as
in [3], which immediately gives the result of the forthcoming
theorem for w = 0. This choice of parameters enables us to
show the following more general result.

Theorem 11. Let δ ∈ (0, 1) and choose basic wave vectors
(k1, k2) which satisfy the δ-non-flatness condition, such that
the dispersion relation ∆(k, c0) = 0 has the only solutions
k = ±k j , j = 1, 2, in Γ . Then choose c =

c0
1+µ

(1, w) such

that |w| ≤
δ
5 and the ratio

k1 · c
k2 · c

=
r

s
∈ Q+, (55)

where r, s ∈ N are relatively prime, is close enough to k1·c0
k2·c0

.
Fix σ ∈ N large enough and assume 1 ≤ s ≤ σ . Choose
values of τ2 ∈ (δ, δ−1), except in a small neighborhood of a
finite set τ

(m)
2 (τ1, l1, l2) of cardinality at most O(ln σ). Then,

for any p ≥ 5, there is a family of bifurcating bi-periodic
traveling waves, U = (η, v) which are solutions of (3) in G p,
are in general non-symmetric with respect to the propagation
direction c, and are of the form

U =

∑
1≤ j+l+m+q≤n

A j A
l
Bm B

q
U jlmq + o((|A| + |B|)n) (56)

with

A = ε1eik1·y, B = ε2eik2·y,

where y corresponds to an arbitrary horizontal shift,

µ = α1ε
2
1 + α2ε

2
2 + O(ε2

1 + ε2
2)

2,

w = β1ε
2
1 + β2ε

2
2 + O(ε2

1 + ε2
2)

2,
(57)

where the “rational” restriction (55) on w implies a restriction
on amplitudes (ε1, ε2) which are uniformly bounded by
O{(|µ|/ ln σ)1/2

} with |µ| � (ln σ)−1.

Remark 12. If we ignore the translation invariance of the set
of solutions, we notice that we have a basic 3-dimensional set
of free parameters with (k1, k2) subjected to the dispersion
relation, with the bifurcation parameters (µ, w) or equivalently
the amplitudes (ε1, ε2). However, we should notice that the
rationality condition (55) only allows a reduced choice for w

of measure zero in R.

Remark 13. If we fix the order of regularity p, we need to stop
the expansion (56) at order n such that p − (2(n − 2)) ≥ 2, i.e.
n ≤ 1 + p/2. This is due to the loss of regularity for increasing
powers in w for the expansion of V(A, A, B, B, µ,w) defined
below.

Remark 14. With the calculations presented in the appendix,
the explicit expression for the orders 1 and 2 in ε1 and ε2 of the
solution U is

U = Aξk1 + Aξ−k1 + Bξk2 + Bξ−k2 + ζ2,0(A2e2ik1·x

+ A
2
e−2ik1·x) + ζ0,2(B2e2ik2·x + B

2
e−2ik2·x)

+ ζ1,1(ABei(k1+k2)·x + ABe−i(k1+k2)·x)

+ ζ1,−1(ABei(k1−k2)·x + ABe−i(k1−k2)·x) + h.o.t.,

where A, B ∈ C, and ξ±k j , ζl,n are defined in (36), (71), (72).
The coefficients α j and β j appearing in the expansions of µ

and w are given by (68), (75)–(78). These explicit expressions
allow us to make numerical computations and show pictures at
the end of the paper.

Proof of the theorem. First we decompose U ∈ G p as

U = X + V,

where

X = Aξk1 + Aξ−k1 + Bξk2 + Bξ−k2 ∈ E,

〈V, ξ±k j 〉H0 = 0, j = 1, 2.

Observe that E ⊂ G p for all p ≥ 0. The above decomposition
is unique for any p ≥ 0, hence the mapping U 7→ V defines a
projectionQ from G p to G p ∩{kerLc0}

⊥

H0 , which is orthogonal
for p = 0. Now, we note that

QGX = 0, QGV = GV, p ≥ 1,

QL(1) X = 0, QL(1)V = L(1)V, p ≥ 3.

Assuming U ∈ G p, p ≥ 3, it follows from (54) that

Lc0(1,w)V + µGV + (1 + µ)QGN (X + V, X + V ) = 0, (58)

〈µGX + wL(1) X + (1 + µ)GN (X + V, X + V ), ξ±k j 〉 = 0,

j = 1, 2. (59)

We notice that (58) may be solved by the implicit function
theorem in G p ∩ {kerLc0}

⊥

H0 , for any p ≥ 3, with respect to
V . Indeed, Eq. (58) is of the form

Lc0(1,w)V + F(X, V, µ) = 0

in G p−3, where F is analytic in its arguments as a function

from E ×

(
G p ∩ {kerLc0}

⊥

H0

)
× R into G p−1 ∩ {kerLc0}

⊥

H0 ,

and satisfies

F(0, 0, µ) = 0, DVF(0, 0, 0) = 0.

Due to Lemma 8, the operator Lc0(1,w) has a bounded inverse
from G p−1∩{kerLc0}

⊥

H0 to G p ∩{kerLc0}
⊥

H0 , and this bound is
uniform in w, provided that w satisfies the rationality condition
(41), (k1, k2) the non-flatness condition, and s is bounded
by some fixed σ . Due to the bound of {L̃c0(1,w)}

−1 found in
Lemma 8 we need to assume that

|µ| ln σ � 1, ‖X‖ ln σ � 1, (60)

which implies

‖V ‖
2
G p

ln σ and |µ|‖V ‖G p ln σ � ‖V ‖G p

and finally

‖V ‖ = O(‖X‖
2 ln σ). (61)

Therefore, for A, B close enough to 0, w satisfying (41), and
(k1, k2) satisfying the non-flatness condition and s ≤ σ , we
obtain

V = V(A, A, B, B, µ,w) ∈ G p ∩ {kerLc0}
⊥

H0

which is analytic in (A, A, B, B, µ), the dependency in w being
more subtle. In fact V(A, A, B, B, µ,w) is in G p ∩{kerLc0}

⊥

H0

with p ≥ 3, and has an asymptotic expansion in powers of w in
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the neighborhood of 0. To prove this, let us define

V0 = V(A, A, B, B, µ, 0),

V1 = V(A, A, B, B, µ,w) − V0.

Then V1 satisfies

0 = Lc0(1,w)V1 + wL(1)V0 + µGV1

+ 2(1 + µ)QGN (X + V0,V1)

+ (1 + µ)QGN (V1,V1). (62)

Since wL(1)V0 ∈ G p−3 ∩ {kerLc0}
⊥

H0 , with a small enough
norm, we can solve Eq. (62) with respect to V1 in G p−2 ∩

{kerLc0}
⊥

H0 , provided that p ≥ 5. Denoting by V10 the value of
the solution V1 when one replaces Lc0(1,w) by Lc0 , we can set
V1 = V10 + V2 and obtain V2 by the implicit function theorem
in G p−4 ∩ {kerLc0}

⊥

H0 , and so on. Now we have estimates of
the form

‖V0‖G p ≤ γ c(σ )‖X‖
2,

‖V1‖G p−2 ≤ γ c(σ )|w|‖X‖
2,

‖V2‖G p−4 ≤ γ c(σ )|w|
2
‖X‖

2,

and so on. This proves the assertion on the asymptotic
expansion in powers of w (not converging in general) for
V(A, A, B, B, µ,w) in any space G p ∩ {kerLc0}

⊥

H0 , p ≥ 3
(the choice of p is arbitrary, but we need to stop the expansion
at some order to insure the existence of the solution in some
space G p, as indicated in the Remark 13.

Now, using the symmetry properties (13) of the basic
equation (54), (38), and also

TyQ = QTy, S0Q = QS0,

we show that the uniqueness of V leads to the following
properties:

TyV(A, A, B, B, µ,w) = V(Aeik1·y, Ae−ik1·y, Beik2·y,

Be−ik2·y, µ,w),

S0V(A, A, B, B, µ,w) = V(A, A, B, B, µ,w).

(63)

More precisely, we have in any G p ∩ {kerLc0}
⊥

H0 , p ≥ 3

V(A, A, B, B, µ,w) = −L̃−1
c0
QGN (X, X)

+ O((|µ| + |w|)‖X‖
2
+ ‖X‖

3). (64)

Now replacing V by V(A, A, B, B, µ,w) in (59) which
consists of four equations, we obtain in fact 2 complex
equations, with their complex conjugates, of the form

h1(A, A, B, B, µ,w) = 0, h2(A, A, B, B, µ,w) = 0,

where h1 is obtained by taking k1 in (59) and h2 by taking
k2, and h j , j = 1, 2, is analytic in (A, A, B, B, µ) and in C l

at the origin with respect to w (l is arbitrary). The symmetry
properties (13), (38) and (63) lead, for any y ∈ R2, to the
following relationships

h1(Aeik1·y, Ae−ik1·y, Beik2·y, Be−ik2·y, µ,w)

= eik1·yh1(A, A, B, B, µ,w),

h2(Aeik1·y, Ae−ik1·y, Beik2·y, Be−ik2·y, µ,w)

= eik2·yh2(A, A, B, B, µ,w),

h1(A, A, B, B, µ,w) = −h1(A, A, B, B, µ,w).

It results that

h1(A, A, B, B, µ,w) = iAg1(|A|
2, |B|

2, µ,w),

h2(A, A, B, B, µ,w) = iBg2(|A|
2, |B|

2, µ,w),

where g1 and g2 are real valued smooth functions of their
arguments, since the h j are smooth. When B = 0 (or A = 0)
one obtains plane waves with basic wave vector k1 (or k2), and
the direction of propagation being somewhat arbitrary provided
it is not orthogonal to k1 (or k2). When AB 6= 0, one obtains
the bi-periodic traveling waves, which are the main object of
our study. To conclude their existence, we need to solve the real
system of two equations:

g1(|A|
2, |B|

2, µ,w) = 0,

g2(|A|
2, |B|

2, µ,w) = 0.
(65)

In the case when the lattice Γ has a diamond structure and
the x1-axis is chosen such that k1 and k2 are symmetric with
respect to this axis, we have the additional symmetry properties
(14) and (39) which, thanks to the uniqueness of V and for
w = 0 (i.e. when c is in the x1-direction), leads to

S1V(A, A, B, B, µ, 0) = V(B, B, A, A, µ, 0).

This implies

h1(B, B, A, A, µ, 0) = h2(A, A, B, B, µ, 0),

hence

g1(|B|
2, |A|

2, µ, 0) = g2(|A|
2, |B|

2, µ, 0). (66)

The computations in the general case, detailed in the
Appendix, lead to

g j = 2l j (1 + τ 2
j )

3/2Ω
{
µ + (−1) jwτ j + a j |A|

2

+ b j |B|
2
+ h.o.t.

}
, (67)

where the coefficients are explicitly given in the Appendix. This
leads to

µ = −
a1 + a2

2
ε2

1 −
b1 + b2

2
ε2

2 + O(ε2
1 + ε2

2)
2,

w(τ1 + τ2) = (a1 − a2)ε
2
1 + (b1 − b2)ε

2
2 + O(ε2

1 + ε2
2)

2.

(68)

From the bounds (60) and (61), one has

ε1 + ε2 = O(|µ|
1/2(ln σ)−1/2), (69)

which finishes the proof of Theorem 11. �

Remark 15. A particular case of Theorem 11 is when l1
l2

=
r
s ∈

Q. In such a case w = 0 is elligible, i.e., waves traveling in the
x1 direction.
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Fig. 1. Γ symmetric, τ = 0.5, l1 = l2 = 0.25, ε1 = 0.1, (i) ε2/ε1 = 0.1, (ii)
ε2/ε1 = 0.5, (iii) ε2/ε1 = 0.7 (asymmetric waves), (iv) ε2/ε1 = 1 (symmetric
waves). The direction of propagation of the waves is the vertical axis, point
downward. Crests are light and troughs are dark.

Fig. 2. Γ symmetric, τ = 0.7, l1 = l2 = 0.25, ε1 = 0.1, (i) ε2/ε1 = 0.5
(asymmetric waves), (ii) ε2/ε1 = 1 (symmetric waves).

5. Plotting the free surface

We can now plot the traveling surfaces in the (z1, z2) plane,
where z2 is the traveling direction and points downward, i.e.,

x1 =
wz1 + z2
√

1 + w2
, x2 =

−z1 + wz2
√

1 + w2
.

In all figures the crests are light and troughs are dark.
By choosing the waves of the bifurcating family with

A = ε1, B = ε2,

the elevation η of the waves indicated in the pictures is
computed with terms up to degree 2 in (ε1, ε2):

Fig. 3. Γ symmetric, τ = 1, l1 = l2 = 0.25, ε1 = 0.1, (i) ε2/ε1 = 0.5
(asymmetric waves), (ii) ε2/ε1 = 1 (symmetric waves).

Fig. 4. Γ symmetric, τ = 1.5, l1 = l2 = 0.25, ε1 = 0.1, (i) ε2/ε1 = 0.5
(asymmetric waves), (ii) ε2/ε1 = 1 (symmetric waves).

Fig. 5. Γ asymmetric, τ1 = 0.5, τ2 = 0.7, l1 = 0.25, ε1 = 0.1, (i)
ε2/ε1 = 0.5, (ii) ε2/ε1 = 1.

η ≈ 2ε1

√
1 + τ 2

1 cos(k1 · x) + 2ε2

√
1 + τ 2

2 cos(k2 · x)

+ 2ε2
1(ζ2,0)1 cos(2k1 · x) + 2ε2

2(ζ0,2)1 cos(2k2 · x)

+ 2ε1ε2(ζ1,1)1 cos((k1 + k2) · x)

+ 2ε1ε2(ζ1,−1)1 cos((k1 − k2) · x).

For fixed values of l1, τ1, τ2, we compute l2 with formula (24)
and once ε1 and ε2 are fixed, we compute w with (68). When
τ1 = τ2 = τ and l1 = l2, the lattice Γ is symmetric. Fig. 1
shows the influence of the ratio ε1/ε2 when the lattice Γ is
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Fig. 6. Γ asymmetric, τ1 = 0.5, τ2 = 1, l1 = 0.25, ε1 = 0.1, (i) ε2/ε1 = 0.5,
(ii) ε2/ε1 = 1.

Fig. 7. Γ asymmetric, here w = 0, l1 = 0.25, ε1 = 0.1, (i) τ1 = 0.5,
τ2 = 0.53, ε2 = 0.15, (ii) τ1 = 0.5, τ2 = 0.6, ε1 = 0.05, ε2 = 0.2.

symmetric. When ε2/ε1 = 1, the wave pattern is symmetric
with respect to the propagation direction (here the vertical
direction). Figs. 2–4 also show cases with a symmetric lattice
Γ for different values of τ and compare the asymmetric pattern
with ε2/ε1 = 0.5 with the symmetric one with ε2/ε1 = 1.

Figs. 5 and 6 show cases with a non-symmetric lattice Γ . Fig. 7
provides two examples of waves where w ≈ 0 i.e., once ε1
is fixed, we compute ε2 with (68) in such a way that w = 0
at leading order. Notice that in view of Theorem 11, these
solutions exist for l1/ l2 rational. But in our computed examples
this ratio may not be rational, so we take r/s to be a rational
approximation of l1/ l2 in such a way that w is very close to 0.

Appendix. Computation of the coefficients

This Appendix is devoted to the computation of the principal
part of the system (67), leading to the existence of non-
symmetric traveling waves for (1). First, Eq. (64) with the
symmetry property (63) leads to

V = ζ2,0(A2e2ik1·x + A
2
e−2ik1·x) + ζ0,2(B2e2ik2·x

+ B
2
e−2ik2·x) + ζ1,1(ABei(k1+k2)·x + ABe−i(k1+k2)·x)

+ ζ1,−1(ABei(k1−k2)·x + ABe−i(k1−k2)·x) + h.o.t. (70)

where

ζ2,0e2ik1·x = −L̃−1
c0
GN (ξk1 , ξk1),

ζ0,2e2ik2·x = −L̃−1
c0
GN (ξk2 , ξk2),

ζ1,1ei(k1+k2)·x = −2L̃−1
c0
GN (ξk1 , ξk2),

ζ1,−1ei(k1−k2)·x = −2L̃−1
c0
GN (ξk1 , ξ−k2).

The suppression of the projection Q comes from the non-
resonance of 2k1, 2k2, k1 ± k2 with ±k j and we also used the
fact

GN (ξk j , ξ−k j ) = 0, j = 1, 2.

Straightforward calculations show that

GN (ξk1 , ξk1) =

2il1(1 + τ 2
1 )3/2

il1(1 + τ 2
1 )

iτ1l1(1 + τ 2
1 )

 e2ik1·x,

GN (ξk2 , ξk2) =

2il2(1 + τ 2
2 )3/2

il2(1 + τ 2
2 )

−iτ2l2(1 + τ 2
2 )

 e2ik2·x,

2GN (ξk1 , ξk2) = i(1 − τ1τ2)

l1
√

1 + τ 2
1 + l2

√
1 + τ 2

2
l1 + l2

(τ1l1 − l2τ2)


× ei(k1+k2)·x + i

√
1 + τ 2

1

√
1 + τ 2

2

×

l1
√

1 + τ 2
1 + l2

√
1 + τ 2

2
0
0

 ei(k1+k2)·x,

2GN (ξk1 , ξ−k2) = i(1 − τ1τ2)

l1
√

1 + τ 2
1 − l2

√
1 + τ 2

2
l1 − l2

(τ1l1 + l2τ2)


× ei(k1−k2)·x + i

√
1 + τ 2

1

√
1 + τ 2

2

×

l1
√

1 + τ 2
1 − l2

√
1 + τ 2

2
0
0

 ei(k1−k2)·x,

and therefore, we find by using (20) that

ζ2,0 =
2l2

1(1 + τ 2
1 )

D2,0


2c0

√
1 + τ 2

1 D1,0 + 1 + τ 2
1

c0 D1,0 + 2
√

1 + τ 2
1

τ1(c0 D1,0 + 2
√

1 + τ 2
1 )

 ,

ζ0,2 =
2l2

2(1 + τ 2
2 )

D0,2


2c0

√
1 + τ 2

2 D0,1 + 1 + τ 2
2

c0 D0,1 + 2
√

1 + τ 2
2

−τ2(c0 D0,1 + 2
√

1 + τ 2
2 )

 ,

(71)
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ζ1,1 =
L+

D1,1

D+c0(l1 + l2)
l1 + l2

τ1l1 − τ2l2


+

1 − τ1τ2

D1,1

 6D+ − 1
D+c0(l1 + l2)

2

D+c0(l1 + l2)(τ1l1 − τ2l2)

 ,

ζ1,−1 =
L−

D1,−1

D−c0(l1 − l2)
l1 − l2

τ1l1 + τ2l2


+

1 − τ1τ2

D1,−1

 6D− − 1
D−c0(l1 − l2)

2

D−c0(l1 − l2)(τ1l1 + τ2l2)

 ,

(72)

where

L+ =

(
1 − τ1τ2 +

√
1 + τ 2

1

√
1 + τ 2

2

)
×

(
l1
√

1 + τ 2
1 + l2

√
1 + τ 2

2

)
,

L− =

(
1 − τ1τ2 +

√
1 + τ 2

1

√
1 + τ 2

2

)
×

(
l1
√

1 + τ 2
1 − l2

√
1 + τ 2

2

)
,

D1,0 = 1 +
2l2

1

3
(1 + τ 2

1 ), D0,1 = 1 +
2l2

2

3
(1 + τ 2

2 ),

D2,0 = 4l2
1 [(D1,0)

2c2
0 − (1 + τ 2

1 )],

D0,2 = 4l2
2 [(D0,1)

2c2
0 − (1 + τ 2

2 )],

D+ = 1 +
1
6
[(l1 + l2)

2
+ (l1τ1 − l2τ2)

2
],

D− = 1 +
1
6
[(l1 − l2)

2
+ (l1τ1 + l2τ2)

2
],

D1,1 = c2
0(l1 + l2)

2 D2
+ − (l1 + l2)

2
− (l1τ1 − l2τ2)

2,

D1,−1 = c2
0(l1 − l2)

2 D2
− − (l1 − l2)

2
− (l1τ1 + l2τ2)

2.

Let us now calculate the leading terms in (65). Let us notice that

〈ξk j , ξk j 〉 = 2(1 + τ 2
j )Ω ,

where

Ω =
4π2

l1l2(τ1 + τ2)

is the area of the parallelogram formed with λ1 and λ2 (see the
definition of the lattice of periods Γ ′ in (9)). Now, from (52)
and (53) we have the following identities

µ〈Gξk j , ξk j 〉 = 2iµl j (1 + τ 2
j )

3/2Ω ,

〈wL(1)ξk j , ξk j 〉 = 2i(−1) jwτ j l j (1 + τ 2
j )

3/2Ω

and it is clear that with our non-resonance assumption we have

〈GN (X, X), ξk j 〉 = 0.

For deriving the principal parts of g1 and g2 in (65), we obtain
(67) with

2il1(1 + τ 2
1 )3/2Ωa1 = 〈2GN (ξ−k1 , ζ2,0e2ik1·x), ξk1〉,

2il2(1 + τ 2
2 )3/2Ωb2 = 〈2GN (ξ−k2 , ζ0,2e2ik2·x), ξk2〉,

(73)

2il1(1 + τ 2
1 )3/2Ωb1 =

〈
2G
{
N (ξk2 , ζ1,−1ei(k1−k2)·x)

+N (ξ−k2 , ζ1,1ei(k1+k2)·x)
}

, ξk1

〉
,

2il2(1 + τ 2
2 )3/2Ωa2 =

〈
2G
{
N (ξk1 , ζ1,−1e−i(k1−k2)·x)

+N (ξ−k1 , ζ1,1ei(k1+k2)·x)
}

, ξk2

〉
.

(74)

Solving (67) with respect to µ and w and denoting |A| =

ε1, |B| = ε2 leads to (68).
Notice that the value w = 0 leads to asymmetric waves

provided that

(a1 − a2)(b1 − b2) < 0.

This particular case gives (the propagation direction is the x1-
axis)

ε2
2 =

a1 − a2

b2 − b1
ε2

1 + O(ε4
1),

µ = −
ε2

1

2(b2 − b1)
{(a1 + a2)(b2 − b1)

+ (a1 − a2)(b1 + b2)} + O(ε4
1).

If the lattice Γ has a diamond structure and we choose the x1-
axis such that k1 and k2 are symmetric with respect to this axis,
the additional symmetry (66) implies

a1 = b2, a2 = b1,

and

µ = −
a1 + a2

2
(ε2

1 + ε2
2) + O(ε2

1 + ε2
2)

2,

wτ = (ε2
1 − ε2

2)

{
(a1 − a2)

2
+ O(ε2

1 + ε2
2)

}
,

where only rational values of the small parameter wτ = (r −

s)/(r + s), s ≤ σ are allowed, which leads to a restricted
choice for the amplitudes ε1 and ε2. The special choice ε1 = ε2
gives the symmetrical waves propagating in the x1-direction as
described in [3].

It remains to compute the coefficients a j and b j . Since

〈2GN (ξ−k1 , ζ2,0e2ik1·x), ξk1〉 =
2il3

1(1 + τ 2
1 )3Ω

D2,0

× (4c0 D1,0 + 5
√

1 + τ 2
1 ),

〈2GN (ξ−k2 , ζ0,2e2ik2·x), ξk2〉 =
2il3

2(1 + τ 2
2 )3Ω

D0,2

× (4c0 D0,1 + 5
√

1 + τ 2
2 ),

〈2GN (ξk2 , ζ1,−1ei(k1−k2)·x), ξk1〉 =
il1(1 + τ 2

1 )1/2Ω
D1,−1

× {L2
− + 2L−(1 − τ1τ2)D−c0(l1 − l2)

+ 6(1 − τ1τ2)
2(D− − 1)},

〈2GN (ξ−k2 , ζ1,1ei(k1+k2)·x), ξk1〉 =
il1(1 + τ 2

1 )1/2Ω
D1,1

× {L2
+ + 2L+(1 − τ1τ2)D+c0(l1 + l2)
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+ 6(1 − τ1τ2)
2(D+ − 1)},

〈2GN (ξk1 , ζ1,−1ei(k2−k1)·x), ξk2〉 =
il2(1 + τ 2

2 )1/2Ω
D1,−1

× {L2
− + 2L−(1 − τ1τ2)D−c0(l1 − l2)

+ 6(1 − τ1τ2)
2(D− − 1)},

〈2GN (ξ−k1 , ζ1,1ei(k1+k2)·x), ξk2〉 =
il2(1 + τ 2

2 )1/2Ω
D1,1

× {L2
+ + 2L+(1 − τ1τ2)D+c0(l1 + l2)

+ 6(1 − τ1τ2)
2(D+ − 1)},

we obtain

a1 =
l2
1(1 + τ 2

1 )3/2

D2,0
(4c0 D1,0 + 5

√
1 + τ 2

1 ), (75)

b2 =
l2
2(1 + τ 2

2 )3/2

D0,2
(4c0 D0,1 + 5

√
1 + τ 2

2 ), (76)

a2 =
1

2(1 + τ 2
2 )

{
L2

+

D1,1
+

L2
−

D1,−1

+ 2(1 − τ1τ2)c0

(
L+ D+

D1,1
(l1 + l2) +

L− D−

D1,−1
(l1 − l2)

)
+ 6(1 − τ1τ2)

2
(

D+ − 1
D1,1

+
D− − 1
D1,−1

)}
, (77)

b1 =
1

2(1 + τ 2
1 )

{
L2

+

D1,1
+

L2
−

D1,−1

+ 2(1 − τ1τ2)c0

(
L+ D+

D1,1
(l1 + l2) +

L− D−

D1,−1
(l1 − l2)

)
+ 6(1 − τ1τ2)

2
(

D+ − 1
D1,1

+
D− − 1
D1,−1

)}
. (78)

In the case when the lattice Γ has a diamond structure, and
we choose the x1-axis such that k1 and k2 are symmetric with
respect to this axis, these formulas become

a1 = b2 =
l2(1 + τ 2)3/2

D2,0
(4c0 D1,0 + 5

√
1 + τ 2),

a2 = b1 =
1

2(c2
0 D2

+ − 1)

{
4c0 D+

(1 − τ 2)
√

1 + τ 2
+

5 + 2τ 2
+ τ 4

1 + τ 2

}
−

(1 − τ 2)2

2(1 + τ 2)
,

where

D1,0 = D0,1 = 1 +
2l2

3
(1 + τ 2),

D2,0 = D0,2 = 4l2(c2
0 D2

1,0 − (1 + τ 2)),

D+ = 1 +
2l2

3
.
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