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Abstract. The fundamental group of a closed irreducible 3-dimensional
manifold has the Rapid Decay property if and only if it is not virtually
Sol. This is proved by studying distortion of length functions in graphs
of groups, and the stability of the Rapid Decay property in polynomially
distorted graph of groups.

1. Introduction

A closed 3-manifold is a connected, compact 3-manifoldM without bound-
ary. It is irreducible if every embedded 2-sphere bounds a 3-ball. We say
that a compact 3-manifold M has X-geometry if π1(M), the fundamental
group of M (we omit the base-point), is a discrete cocompact subgroup of
the isometry group of a complete metric space X. In that case the group
π1(M) has a similar large scale geometry as the metric space X and they are
quasi-isometric. Ideas and methods of 3-dimensional topology have widely
spread through geometric group theory. Although a lot is known about
their structure, especially since the proof of the Poincare conjecture [27],
they present particularly rich phenomena and form a natural class where to
test properties or conjectures, [24].

The property of Rapid Decay for finitely generated groups first appeared
in a famous paper by Haagerup [16] (hence also sometimes called “Haagerup
inequality” [33]), where it was proven for free groups on finitely many let-
ters. The Rapid Decay property found numerous applications for instance
in proving Novikov [5] and Baum-Connes [23] conjectures among others. We
refer to [4] for a quick introduction and survey about this property, and to
Subsection 2.2 for the facts relevant to our present discussion. Rapid Decay
is a property about the algebra CG of the group G: it is a classical fact that
the multiplication of CG extends to the `1-completion, but not to the `2-
completion, unless the group G is finite. However, the Rapid Decay property
allows a control of the `2-norm of the product of two elements in CG, poly-
nomially in terms of the diameter (measured using a finite generating set)
of the support of either one of those elements. The Rapid Decay property
is satisfied, among others, by word hyperbolic groups, polynomial growth
groups and Jolissaint in [22] showed that this property cannot be satisfied by
any amenable group with exponential growth, or by any group containing
an exponentially distorted copy of the integers. Sapir in [30] constructed
finitely generated groups without the Rapid Decay property and without
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amenable subgroups of exponential growth, but it is an open question if
such groups can be finitely presented.

We show that containing an exponentially distorted copy of the integers
is the only obstruction in the case of 3-manifold groups, and our main result
is the following.

Theorem 1.1. Let M be a closed, irreducible 3-manifold. The fundamental
group π1(M) has the Rapid Decay property if and only if M does not have
Sol-geometry.

Recall that the Lie group Sol is defined by the following split extension

0→ R2 → Sol→ R→ 0

where t ∈ R acts on R2 by (x, y) 7→ (etx, e−ty). Since this is an amenable
group with exponential growth, then so is π1(M) for any closed manifold
with Sol geometry and his group does not have Rapid Decay property, so
our main theorem is really about the other direction.

Kneser’s theorem decomposes any closed orientable 3-manifold M as the
connected sum of prime summands, that is either manifolds homeomorphic
to S2 × S1, or irreducible ones, namely those for which every S2-embedding
extends to the ball. Van Kampen’s theorem expresses the fundamental
group of M as the free product of the fundamental groups of these prime
summands. Since π1(S2 × S1) = Z, it has the Rapid Decay property. Hence
by our main theorem, the fundamental group of a prime summand has Rapid
Decay property if and only if it does not have Sol-geometry. Moreover, Rapid
Decay property is stable by commensurability1, so since any non-orientable
closed 3-manifold admits an orientable double cover, we deduce the following

Corollary 1.2. The fundamental group of a closed 3-manifold has Rapid
Decay property if and only if none of the prime summands of an orientable
cover has Sol-geometry.

Some technical tools for the proof of Theorem 1.1 are of independent
interest. One is the following result, which is a generalization of Jolissaint’s
results [22] on stability of the Rapid Decay property.

Proposition 1.3. Let G be a graph of groups with loose polynomial distor-
tion and finitely generated vertex groups. If each vertex-group has Rapid
Decay property, then so does π1(G).

We refer to Definition 2.6, Definition 2.5 and Remark 2.9 for the discussion
on distortion. The proof of that proposition, as well as basic facts about
graphs of groups, their fundamental groups and the Rapid Decay property,
is in Section 2. Section 3 investigates some technical conditions to ensure (a
stronger version of) polynomial distortion for the graphs of groups describing
the various manifolds, leading to the following important step.

Proposition 1.4. Let G be the fundamental group of a graph manifold
M . The graph of groups G whose vertex-groups are the fundamental groups
of the maximal Seifert submanifolds in M , and such that π1(G) = G, is
undistorted.

1If two groups share an isomorphic finite index subgroup, then one has Rapid Decay
property if and only if, the other one does as well.
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Section 4 discusses the structure of various manifolds as fundamental
groups of graphs of groups having at most polynomial distortion and vertex
groups having the Rapid Decay property. We now explain how all the pieces
fit together for the proof of our main result.

Proof of Theorem 1.1. Let M be a closed, irreducible 3-manifold which does
not have Sol-geometry. Because Rapid Decay property is stable up to com-
mensurability, without loss of generality, we can assume that M is orientable
and that π1(M) is infinite. If M is finitely covered by a torus bundle over
S1, then, since by assumption M does not have Sol-geometry, it is finitely
covered by the mapping-torus either of a periodic homeomorphism of the
torus, or of a reducible one acting as a twist along an invariant curve: in
both cases, the fundamental group of such a finite cover is the semi-direct
product of Z2 by Z acting by an at most polynomially growing automor-
phism. Hence this group has polynomial growth so by [22][Corollary 2.1.10]
has Rapid Decay property, and so does the fundamental group of M . As-
sume then that M is not finitely covered by a torus bundle over S1. If M
is finitely covered by a torus bundle over the interval, then its fundamen-
tal group is commensurable to Z2, which again has Rapid Decay property
because it has polynomial growth.

We are now left with the case where M is a genuine 3-manifold (Definition
4.1). If M is a Seifert manifold, then it is virtually a central extension
of a hyperbolic group (see Proposition 4.3) so has Rapid Decay property
according to [26]. If M is atoroidal and not Seifert, geometrization leaves us
with a hyperbolic manifold and Rapid Decay property, both in the closed and
finite volume interior (i.e. compact with boundary tori) cases, follows from
classical results from the literature, see Proposition 4.6. Finally assume that
M is neither atoroidal nor Seifert, then either M is a graph manifold and
Proposition 1.4 expresses its fundamental group as the fundamental group
of an at most polynomially distorted graph of groups with vertex groups
being fundamental groups of Seifert manifolds. So, Proposition 1.3 gives the
conclusion. Or, M is a mixed 3-manifold and again we express π1(M) as the
fundamental group of an at most polynomially distorted graph of groups,
but now with vertex groups being either fundamental groups of atoroidal
manifolds with boundary or of graph manifolds with boundary, see Lemma
4.13 and Proposition 4.14. Once again, combined with Proposition 1.3, this
gives the conclusion. �

Remark 1.5. According to [4], Rapid Decay property for Seifert manifolds
and graph manifolds with boundary or for mixed manifolds (with or without
boundary) is a consequence of other works like [35], [28] or [29], the last two
ones giving a suitable proper action of the fundamental group of a mixed
manifold on a finite dimensional CAT(0) cubical complex. Notice also that,
once proven the Rapid Decay property for atoroidal and graph manifolds,
the case of mixed manifolds can be deduced by combining [6] and [8]. We
do not appeal to any of these works and we treat both closed manifolds and
manifolds with boundary without distinction, in a self-contained way.
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2. Graphs of groups and the Rapid Decay property

In this section we recall basic facts about graphs of groups, show that
polynomial distortion, which is a geometric condition on the graph of groups,
allows to deduce the Rapid Decay property. Recall that a length function on
a group G is a positive real function which is symmetric, sub-additive with
respect to the group operation and vanishes on the neutral element. For
instance, the word-length associated to any generating set of G is a length
function, but we will only be dealing with finite generating sets here. If G
embeds in a larger finitely generated group H, then G also inherits a length
function from the length from H, but those could be quite different, and
this difference is crucial in what follows.

2.1. The fundamental group of a graph of groups. We borrow the
following presentation from [36] (see also [18]), and refer the interested reader
to [32] for an introduction to Bass-Serre theory (another point of view is
developed in [7]).

Definition 2.1. A graph of groups is a quadruplet G = (Γ, {Ge}, {Gv}, {ıe})
where:

• Γ = (V,E) is a graph, not necessarily simplicial,
• for each oriented edge e ∈ E, the group Ge associated to the edge e,

called edge-group is finitely generated and Ge = Gē, where ē is the
edge e with the opposite orientation,
• for each vertex v ∈ V , the vertex-group group Gv is discrete and

finitely generated,
• for each oriented edge e ∈ E, there is a monomorphism ıe : Ge →
Gt(e), where t(e) is the terminal vertex of e.

Since the edge e is oriented, there is also a monomorphism ıē : Ge → Gi(e),
where i(e) is the initial vertex of e. The crossing edge maps ıē(Ge) < Gi(e),
the image of the edge-group in its initial vertex, to the terminal vertex-group
Gt(e). It spells out as

ce = ıe ◦ ı−1
ē : ıē(Ge) < Gi(e) → Gt(e),

and ce ◦ cē = id. The G-free product, denoted by GΓ, is the free product of
the vertex groups with the free group generated by the unonriented edges
of Γ, namely

GΓ = ∗v∈VGv ∗ FE .
A (finite) G-sequence from v ∈ V to v′ ∈ V is a sequence

s = (g0, e1, g1, · · · , ek, gk)

where k ≥ 0, the number of edges in s, is the edge-length of s, and e1 · · · ek
is an edge-path in Γ from v to v′. This is the vertical part of the sequence
s, whereas g0 ∈ Gv, gk ∈ Gv′ and gj ∈ Gt(ej) = Gi(ej+1) for j = 1, · · · , k − 1

form the horizontal part (despite a planar analogy, horizontal and vertical
travels do in general not commute). A G-sequence is called a G-loop if it
starts and ends at the same vertex of V . The concatenation of G-sequences
is defined in the obvious way.
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Figure 1. The domain and range of the crossing edge map,
here distorting the edge subgroup along the way.

We write s ∼ t when two G-sequences are equivalent for the relation
generated by the following elementary equivalences

(g, e, g′) ∼ (gıē(h), e, ıe(h
−1)g′)

(g, e, 1, ē, k) ∼ (gk)

where e ∈ E, h ∈ Ge and g, k ∈ Gi(e), g′ ∈ Gt(e). We then denote by [s] the
equivalence class of a G-sequence s.

Definition 2.2. Let G be a graph of groups and choose a base-vertex v0 ∈ V ,
the fundamental group π1(G) is the group of equivalence classes of G-loops
based at v0.

One checks that this is a group for the law given by the concatenation:
[s][t] := [st], the neutral element is the class of the length one sequence
consisting of the neutral element, and the inverse of [s] is given by the
loop obtained reading any representative s backwards and inverting the
elements at each step. Note that if we change the base vertex then we get
an isomorphic fundamental group, hence we omit the base-vertex.

Remark 2.3. Let T ⊆ Γ be a maximal tree, then the fundamental group
π1(G) is the following quotient

π1(G) = GΓ/R

where R is the following set of relations:

R = {e = 1, ıe(h) = ıē(h) if e ∈ E ∩ T, and ıe(h) = e−1ıē(h)e if e ∈ E \ T}.
Indeed, a reduction of a finite G-sequence s consists of the substitution of a
subsequence in s of the form (g, e, ıe(h), ē, g′) by the element gıē(h)g′ ∈ Gt(e).
If t is the resulting G-sequence, then s ∼ t. A G-sequence is reduced if no
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reduction is possible. Any G-sequence is equivalent to a reduced one. More
precisely, if s = (g0, e1, g1, · · · , ek, gk) and t = (g′0, e

′
1, g
′
1, · · · , e′k′ , g′k′) are two

equivalent reduced G-sequences then k = k′, e′j = ej for j = 1, · · · , k and, if

we denote by sj (resp. tj) the initial subpath of s (resp. t) ending with ej
for j ≥ 1 (s0, t0 being trivial), then s−1

j tj defines an element in Gt(ej) which

belongs to ıēj+1(Gej+1) for j = 0, · · · , k − 1.

Definition 2.4. Given a graph of groups G, with fixed generating sets on
the vertex groups, we will call standard set of generators for π1(G) the one
given by the union of the generators of the vertex-groups, along with the
edges in Γ, which is also a generating set for GΓ. We will denote by LΓ

(resp. LG) the length function on the group GΓ (resp. π1(G)) obtained from
that set of generators. Namely, for s = (g0, e1, g1, · · · , ek, gk) a reduced G-

sequence, then LΓ(s) = k+
∑k

i=1 LGt(ei)(gi), so that LGv(g) = LΓ(g) for any

g ∈ Gv and hence:

LG(s) = min{n = k +

k∑
i=1

LGt(ei)(g
′
i) | s = (g′0, e1, g

′
1, · · · , ek, g′k)}

Both, as well as the length functions associated with the vertex-groups
(which agree with the restriction of the Γ-length function) will be termed
standard length functions. Notice that if Γ is a tree to begin with, then π1(G)
is the free product of the vertex-groups, amalgamated over the edge-groups.

Definition 2.5. A graph of groups G has at most polynomial distortion if
for some (and hence any) set of standard length functions, there exists a
polynomial P such that for any vertex-group Gv in G, for any g ∈ Gv, for
any n ∈ N, for any G-loop s of edge-length n such that [s] = g, then the
following inequality holds:

LGv(g) ≤ P (n)LΓ(s)

We shall say that G is undistorted if the polynomial P is a constant.

In words, polynomial distortion implies that traveling outside the vertex-
group provides a polynomial shortcut at most, but it gives the more precise
information that traveling horizontally provides no significant shortcut, and
that traveling vertically provides a polynomial shortcut at most. We will
prove that Definition 2.5 is satisfied by the graph of groups emanating from
3-manifolds groups which was the original motivation. We can however
weaken a little bit the definition and still get the Rapid Decay property in
the context of more general graph of groups:

Definition 2.6. A graph of groups G has loose polynomial distortion if
for some (and hence any) set of standard length functions, there exists a
polynomial P such that for any vertex-group Gv in G, for any g ∈ Gv, for
any G-loop s such that [s] = g, then the following inequality holds:

LGv(g) ≤ P (LΓ(s)).

Remark 2.7. Since

n∑
i=0

aix
i ≤

n∑
i=0

|ai|xi for x in R+, we can substitute the

polynomial P of Definitions 2.5 and 2.6 by a polynomial with same degree
such that:
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• P is increasing over R+.
• For any non negative numbers ri, i = 1, · · · , l, one has

l∑
i=1

P (ri) ≤ P (
l∑

i=1

ri).

These assumptions will be assumed for all the polynomial dealt with through-
out the paper.

Remark 2.8. A G-loop s that satisfies [s] = g ∈ Gv can be reduced to a
single vertex and hence its corresponding edge-path in the graph Γ has even
length n = 2k and is contractible. For our purpose, an equivalent but more
tractable characterization of a graph of groups G having at most polynomial
distortion is to restrict to loops s = pq−1 where p and q are any couple of
reduced G-sequences of edge-length k starting at v, with same endpoint and
such that [pq−1] = g.

Let D : N → N be a non-decreasing function, and let H < G be two
finitely generated groups. If we take a generating set for H that is contained
in a generating set for G, then for any h ∈ H, then LH(h) ≤ LG(h), because
there are some shortcuts in G that are not available in H. We say that H
has distortion at most D if, for any h ∈ H, those shortcuts are controlled
by D, namely

LH(h) ≤ D(LG(h))LG(h).

Gromov in [15] Chapter 3 defines the distortion function as

Disto(n) :=
diamH(H ∩BG(n))

n
.

One checks that 2D(n) ≥ Disto(n/2), so that both definitions are equivalent.
For G a graph of groups with loose polynomial distortion, one notices

that the vertex-groups are all at most polynomially distorted in G = π1(G).
Indeed, since

LG(h) = min{LΓ(w)| [w] = g}
we can deduce polynomial distortion from Definition 2.5 or 2.6. The edge-
groups can a priori have any distortion in their terminal vertex-group, as
the Sol example below shows.

Remark 2.9. Since the integer n in Definition 2.5 is the edge-length (the
length of the vertical part) of the loop, it implies the loose polynomial dis-
tortion of Definition 2.6. The converse is not true: observe in particular
that, in a graph of groups with at most polynomial distortion, each cross-
ing edge map is a quasi isometric embedding (take n = 1 in Definition 2.5)
which does not hold in general in the setting of loose polynomial distortion
(see G5 in the example below).

Example 2.10. Take the graph of group G0 with one single vertex v and
one single edge e, with Gv = F2 = 〈x1, x2〉, Ge = F2 = 〈a1, a2〉 and ıe(a1) =
ıē(a1) = x1 whereas ıe(a2) = x2 and ıē(a2) = x2x

2
1. Then G0 has at most

polynomial distortion.
Notice that if, instead of the last embedding above we take ıē(a2) = x2

2,
then this creates a copy of the Baumslag-Solitar group BS(1, 2), which is
the fundamental group of the graph of groups G1 where Gv = Z = 〈x〉 and
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Ge = 〈a〉, with ıe(a) = x and ıē(a) = x2 so that π1(G1) =
〈
x, e|exe−1 = x2

〉
and one can see that the distortion is exponential.

Consider now the Formanek-Procesi group (see [12]). It is the fundamen-
tal group of the graph of groups G2 with one vertex v and two edges e1, e2

defined as follows: Gv = F3 = 〈x1, x2, y〉, Gei = F3 = 〈a1, a2, b〉 with embed-
dings ıej (ai) = xi ıēj (ai) = xi, ıēj (b) = y and ıej (b) = yxj for j = 1, 2. As
G0, the graph G2 has at most polynomial distortion.

Let us now consider the amalgamated product of the fundamental groups
of two Sol manifolds Z2 oA Z where A is any hyperbolics matrix of SL2(Z).
The associated graph of groups G3 has two vertices v, w, with vertex-groups
Gv = Gw = Z2 oA Z, edge-group Ge = Z2 and is at most polynomially
distorted although the edge-group is exponentially distorted in both vertex-
groups. One builds a similar example G4 by amalgamating two copies of the
Baumslag-Solitar group BS(1, 2) along the subgroup Z which is exponen-
tially distorted in both.

Let us now consider a polynomially, non linearly, growing automorphism α
of F3 = 〈x1, x2, x3〉, for instance α(x1) = x1x

2
2x

3
3, α(x2) = x2x

4
3, α(x3) = x3.

Let G = F3 oα Z and H = F3 ∗Z. The graph of groups G5 with two vertices
v, w with vertex-groups Gv = G and Gw = H, one single edge e with edge-
group Ge = F3 with the obvious embeddings of Ge into Gv and Gw has loose
polynomial distortion but does not have at most polynomial distortion.

We are now defining the universal covering of a graph of group, also known
as Bass-Serre tree, which is a tree with vertices and edges labelled by cosets
of vertex groups.

Definition 2.11. Let G = (Γ, {Ge}, {Gv}, {ıe}) be a graph of groups. The

universal covering of G is the labelled tree TG = (Γ̃, ϕ) where Γ̃ = (Ṽ , Ẽ) is
a tree defined as follows:

(1) The vertices ṽ ∈ Ṽ are equivalence classes of G-sequences s in G
starting at v0 and ending at v, namely

ṽ = sGv = {sg a G-sequence with g ∈ Gv}.

(2) Two vertices ṽ, ṽ′ ∈ Ṽ are connected by an edge ẽ = (ṽ, ṽ′) ∈ Ẽ
with i(ẽ) = ṽ, t(ẽ) = ṽ′ if and only if there is a G-sequence s from
v0 to v = i(e) and there is h ∈ Gv such that if ṽ = sGv, then
ṽ′ = (s, h, e)Gv′ with v′ = t(e).

The base-point of TG is x0 = 1GGv0 . The labelling ϕ : Γ̃ → Cosets(π1(G))

assigns to vertices in Ṽ the label with the terminal vertex in G of the cor-
responding G-sequence: ϕ(ṽ) = sGv if v is this terminal vertex and s the
G-sequence starting at v0 and ending at v. For the edge ẽ between ṽ = sGv
and ṽ′ = (s, h, e)Gv′ with e ∈ E, the label is given by ϕ(ẽ) = (s, h)Ge. There
are then maps

ϕ(ıẽ) = ı̃e = (s, h)ıe : Ge → ϕ(t(ẽ)) = (s, h, e)Gv′

embedding the edge-groups of G in the cosets of the vertex-groups in π1(G),
namely the vertices of the universal cover TG .

Remark 2.12. Observe that TG admits a natural left-action of π1(G) by
pre-composition by a loop based at v0 of the G-sequence. The stabilizers
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of the vertices (resp. of the edges) under this action are conjugates of the
vertex-groups (resp. edge-groups) of G. We denote by πG : TG → G the

covering-map, i.e. the projection which identifies the vertices and edges of Γ̃
with same label in Γ. The terminology for graph of groups lifts naturally to
the universal covering. If s is a TG-sequence then πG(s) is a G-sequence. The
elements of the fundamental group are identified to the TG-sequences from
x0 to another lift in π−1

G (v0), since they project under πG to G-loops based
at v0. The crossing edge map ce associated to an edge e from Definition 2.1
lifts to a crossing edge map c̃ẽ = ı̃e ◦ ı̃−1

ē allowing to move the subset s̃ıē(Ge)
of the coset sGi(e) into the coset (s, e)Gt(e), and satisfying c̃e ◦ c̃ē = id.

When given a set of generators S of a group G, a geodesic word for this
set of generators is a word w in S ∪ S−1 whose number of letters equals the
length of the corresponding element for the length function on G associated
to S.

Definition 2.13. Let G = (Γ, {Ge}, {Gv}, {ıe}) be a graph of groups to-
gether with a fixed choice of generating sets of the edge-groups. We endow
π1(G) and GΓ with the corresponding standard length functions (Definition

2.4). Let TG = (Γ̃, ϕ) be the universal covering of G.

(1) A G-path is a G-sequence s = (w0, e1, w1, · · · , ek, wk) where k ≥ 0
is an integer, each wi is a geodesic word for the standard length
function of the corresponding vertex-group in G, each ei is an edge

in TG such that the sequence e1 · · · ek is a path in the tree Γ̃. The

G-path is called reduced if the corresponding path in the tree Γ̃ is
reduced.

(2) If p is a G-path, the Γ-length of p, denoted by |p|Γ is equal to the
sum of the Gv-lengths of the vertex-elements in p with the number
of edges in p. A G-geodesic is any G-loop p such that |p|Γ = LG([p]).

(3) A normal G-set is a set of G-geodesics in bijection with π1(G).
(4) A normal Γ-set is a set of reduced G-paths, in bijection with a normal
G-set, and so that any of its elements is constructed from the G-
geodesics in this normal G-set by iteration of the following process:
apply a reduction at a geodesic word and substitute the resulting
word by a geodesic word.

(5) If G is equipped with normal G- and Γ-sets, for each element g ∈
π1(G), we denote by g̃ (resp. ĝ) the element of the normal G-set
(resp. Γ-set) which represents g.

While G-sequences belong to the free product GΓ, the subset of G-paths
lie in the universal covering TG of G. Moreover, for G equipped with normal
G- and Γ-sets, then each element of the normal Γ-set is a geodesic word for
the LΓ-length function. Indeed, the Γ-length function in restriction to any
vertex-group agrees with the standard length function of this vertex-group
and the elements of the normal Γ-set are reduced. Finally, notice that a
reduced G-path is a GΓ-geodesic, but is in general not a G-geodesic.

Lemma 2.14. Let G = (Γ, {Ge}, {Gv}, {ıe}) be a graph of groups with loose
polynomial distortion. Then there is a polynomial Q such that, for any
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g ∈ π1(G) the following inequality is satisfied:

LΓ(ĝ) ≤ Q(LG(g)),

where ĝ ∈ GΓ is the element of the normal Γ-set representing g.

Proof. By definition of a normal G-set, for each g ∈ π1(G) one has LG(g) =
|g̃|Γ. The normal G-path g̃ admits a (non-unique) collection of subpaths
r1, · · · , rl with the following properties:

• each ri can be reduced to an element in a vertex-group,
• if i 6= j, either ri ∩ rj is empty or consists of a single vertex,
• after applying all the necessary reductions to each one of the ri’s,

one gets a reduced G-path.

Let us denote by Rc = g̃ \ ∪ri, namely the union of all the subpaths in the
complement in g̃ of the union of the ri’s in such a collection, which allows
the following decomposition:

|g̃|Γ =

l∑
i=1

|ri|Γ + |Rc|Γ.

Since G has loose polynomial distortion, after applying all the reductions at
the ri’s, one gets a reduced G-path g0 such that:

|g0|Γ ≤
l∑

i=1

P (|ri|Γ) + |Rc|Γ.

where P is the polynomial in Definition 2.6. Since the |ri|Γ are positive
integers and by Remark 2.7,

l∑
i=1

P (|ri|Γ) ≤ P (

l∑
i=1

|ri|Γ).

Of course
∑l

i=1 |ri|Γ ≤ |g̃|Γ so that we get:

|g0|Γ ≤ P (|g̃|Γ) = P (LG(g)).

The proof above holds for any choice of a collection of subpaths ri’s. By def-
inition, the element ĝ in the chosen normal Γ-set corresponds to a particular
choice of such a collection hence the conclusion since LΓ(ĝ) = |g0|Γ. �

2.2. The Rapid Decay property. We refer to [4] or [2] for an introduction
to the Rapid Decay property. We just give here a rough account of the
material that we need. For A = C,R+, the notation AG denotes the set
of finitely supported A-valued functions on the group G. The support of a
function f is denoted by supp(f). The convolution of two functions f, g ∈
AG is defined by

(f ∗ g)(γ) =
∑
µ∈G

f(µ)g(µ−1γ),

which corresponds to the standard ring operation on AG. A group homo-
morphism ϕ : G→ H induces a map

Aϕ : AH → AG, f 7→ f ◦ ϕ
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by precomposition, that in general doesn’t preserve any norm on AG or AH,

like the `2-norm given by ||f ||2 =
√∑

γ∈G |f(γ)|2 for f ∈ AG.

Definition 2.15. [16, 22] A group G has the Rapid Decay property with
respect to a length function L if there exists a polynomial P such that, for
any r > 0, for any f ∈ R+G with supp(f) ⊆ BL(r), and for any g ∈ R+G

||f ∗ g||2 ≤ P (r)||f ||2||g||2.

Remark 2.16. Taking the supremum on both sides of the above inequality
over all g ∈ R+ on the ball of radius 1 for the `2-norm gives the following
equivalent condition:

||f ||∗ ≤ P (r)||f ||2
where now ‖f‖∗ is the operator norm of f acting on `2(G) via the left
multiplication in AG. Leptin’s characterization of amenability says that if f
is supported on an amenable subgroup of G, then ‖f‖∗ = ‖f‖1 and so, if f
is the characteristic function of a ball of radius r on an amenable subgroup,
and in particular a cyclic one, that prevents exponential distortion.

Remark 2.17. Let G = (Γ, {Ge}, {Gv}, {ıe}) be a graph of groups together

with a normal Γ-set. For f ∈ R+π1(G), let us define f̂ ∈ R+GΓ by f̂(ĝ) =

f(g) and f̂(w) = 0 for any element w ∈ GΓ not defined by an element in

the normal Γ-set. If f ∈ R+π1(G) then f̂ ∈ R+GΓ with ||f̂ ||2 = ||f ||2.
Moreover, if G has loose polynomial distortion (and so also if G has at most
polynomial distortion by Remark 2.9) according to Lemma 2.14 there is
some polynomial Q such that for any f ∈ R+π1(G) with supp(f) ⊆ BLG (r),

then supp(f̂) ⊆ BLΓ
(Q(r)).

The following lemma provides an isometric map R+π1(G) → R+GΓ pre-
serving the `2-norms of products.

Lemma 2.18. Let G = (Γ, {Ge}, {Gv}, {ıe}) be a graph of groups with
at most polynomial distortion. For any functions f, g ∈ R+π1(G) with
supp(f) ⊆ BLG (r) and g ∈ `2(π1(G)), there exist a polynomial P and func-
tions F,G ∈ R+GΓ with supp(F ) ⊆ BLΓ

(P (r)) and G ∈ R+GΓ such that
||f ∗ g||2 = ||F ∗G||2, ||f ||2 = ||F ||2 and ||g||2 = ||G||2.

Proof. We equip G with normal G- and Γ-sets. Let us fix u ∈ π(G). For

each v ∈ supp(f) ⊆ BLG (r), we set F (v̂) = f̂(v̂) = f(v) and G(v̂−1û) =

ĝ(v̂−1u) = g(v−1u). Since v̂−1û = v̂′
−1
û′ in GΓ implies v−1u = v′−1u′ in

π(G), there is no obstruction in so defining F and G and extending them
by zero on the elements of GΓ where they are not been defined. Hence, for
each u ∈ π1(G) we have two functions F,G on the G-free product such that

f̂ ∗ g(û) = (F ∗G)(û) and the lemma follows from Remark 2.17. �

We are now ready to prove Proposition 1.3 announced in the Introduction:

Proof of Proposition 1.3. Let G = (Γ, {Ge}, {Gv}, {ıe}) be a graph of groups
which has loose polynomial distortion. Let f ∈ R+π1(G) with supp(f) ⊆
BLG (r) for some r > 0 and let g ∈ R+π(G). Lemma 2.18 gives a polynomial

P and functions F,G ∈ R+GΓ with supp(F ) ⊆ BLΓ
(P (r)) and G ∈ `2(GΓ)
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such that ||f ∗g||2 = ||F ∗G||2, ||f ||2 = ||F ||2 and ||g||2 = ||G||2. By [22], the
G-free product GΓ has Rapid Decay property. Hence there is a polynomial
Q such that ||F ∗ G||2 ≤ Q(P (r))||F ||2||G||2. Since ||f ∗ g||2 = ||F ∗ G||2,
||f ||2 = ||F ||2 and ||g||2 = ||G||2, we get the announced conclusion. �

Corollary 2.19. Let G = (Γ, {Ge}, {Gv}, {ıe}) be a graph of groups such
that Γ is a finite tree, the edge-groups are cyclic and each vertex-group has
Rapid Decay property. Then G has loose polynomial distortion, and hence
π1(G) has Rapid Decay property as well.

Proof. To begin with, assume that Γ consists of a single edge e, with v = i(e)
and w = t(e) distinct. Without loss of generality (up to adding generators
in the generating sets of the vertex groups), we may assume that the images
under ıe and ıē of the generator z of the cyclic edge-group belong to the
generating sets of Gv and Gw. Let x1 = ıe(z) be the image of that generator
in Gv and y1 = ıē(z) be the one in Gw. Then, since the morphisms ıe
are injective, there are integers p, q such that ce(x

p
1) = yq1, where ce is the

crossing map for the edge e. The cyclic subgroups generated by x1 and y1

are at most polynomially distorted in their respective vertex groups as those
have Rapid Decay property2. Hence there is an exponential contraction or
dilatation if and only if |p| 6= |q|. Since the edge-groups are cyclic, such a
distortion only occur at powers of x1 or y1, depending on the lift of vertex
v or w considered. Since v 6= w, in any TG-sequence, the lifts of v and w
alternate. Hence a dilatation is followed by a contraction. It follows that G
has loose polynomial distortion.

For the general case, there is more than a single edge in the tree Γ,
but when passing to a lift of Γ to another one in a TG-sequence, the G-
sequence has the form (· · · , e, ē, · · · ) for some oriented edge e of Γ. Hence a
contraction is followed by a dilatation, and conversely, so that the graph of
groups G has loose polynomial distortion.

With G having loose polynomial distortion, Proposition 1.3 gives the con-
clusion since the vertex-groups have Rapid Decay property. �

3. Ensuring polynomial distortion

We introduce below a couple of conditions which together imply loose or
at most polynomial distortion.

Definition 3.1. A graph of groups G seemingly has at most polynomial
distortion if for some (and hence any) set of standard length functions there
exists a polynomial P such that for any vertex-group Gv in G, for any g ∈ Gv,
for any n ∈ N, for any reduced edge-path p in Γ with edge-length n starting
at v, for any h ∈ Gt(p) such that [php−1] = g, the following inequality holds:

LΓ(g) ≤ P (n)LΓ(php−1)

We say that G is seemingly undistorted if the polynomial P is a constant.

And of course we have the following weaker notion.

2Since Z is amenable, an exponentially distorted copy of Z is an obstruction to the
Rapid Decay property, see Remark 2.16.



DISTORTION AND 3-MANIFOLDS 13

Definition 3.2. A graph of groups G seemingly has loose polynomial distor-
tion if for some (and hence any) set of standard length functions there exists
a polynomial P such that for any vertex-group Gv in G, for any g ∈ Gv,
for any reduced edge-path p in Γ starting at v, for any h ∈ Gt(p) such that

[php−1] = g, the following inequality holds:

LΓ(g) ≤ P (LΓ(php−1)).

To seemingly have polynomial distortion is strictly weaker than actually
having polynomial distortion, because being allowed G-sequences is much
more general than edge-paths only, as the following example shows.

Example 3.3. Take Γ the tree with two vertices v, w and a single edge
e, with i(e) = v and t(e) = w, with Gv =

〈
x1, x2, x3 | x2 = x3x1x

−1
3

〉
and

Gw =
〈
y1, y2, y3 | y1 = y3y2y

−1
3

〉
whereas Ge = F2 = 〈a, b〉 with the following

maps

ıe(a) = y1, ıe(b) = y2
2,

ıē(a) = x2
1, ıē(b) = x2.

Hence GΓ = Gv ∗Gw ∗Z and let us see that the distortion is exponential, so

more than polynomial. One has x2n
1 = ay2n−1

1 a−1 and y2n−1

1 = y3y
2n−1

2 y−1
3

and then using the edge y2n−1

2 = a−1x2n−2

2 a and x2n−2

2 = x3x
2n−2

1 x−1
3 .

Combining these last two relations gives x2n
1 = ay3a

−1x3x
2n−2

1 (ay3a
−1x3)−1

hence an exponential distortion of x2n
1 by iterating the process since

LΓ(ay3a
−1x3x

2n−2

1 (ay3a
−1x3)−1) =

1

4
LΓ(x2n

1 ) + 8.

But it is seemingly polynomially distorted because the edge-paths that do
the distortion, do it on at most one edge.

This example prompts the following definition.

Definition 3.4. Let G = (Γ, {Ge}, {Gv}, {ıe}) be a graph of groups equipped

with a set of standard length functions, and let TG = (Γ̃, ϕ) be its universal

covering. If p = e1 · · · el is an edge-path in Γ̃ and a ∈ G̃i(p), we say that
the path p is well-defined at a if the concatenation of the consecutive edge
crossings

c̃p(a) := (c̃el ◦ · · · ◦ c̃e1)(a)

exists. If e is an edge of Γ̃ with i(e) = t(p), we say that the path p is maximal
at a with respect to e if p is well-defined at a but the path p e is not.

Example 3.3 is a particular case of the following lemma.

Lemma 3.5. Let G = (Γ, {Ge}, {Gv}, {ıe}) be a graph of groups so that Γ
is a finite tree and so that, for any oriented edge e, the image of the corre-
sponding crossing edge map distorts lengths at most polynomially, namely

LGi(e)(g) ≤ P (LGt(e)(ce(g)),

for any g ∈ ıē(Ge) < Gi(e). Then G seemingly has loose polynomial distor-
tion. If moreover the crossing edge maps are quasi-isometric embeddings,
then G is seemingly undistorted.



14 INDIRA CHATTERJI, FRANÇOIS GAUTERO

Figure 2. The path p = e1e2e3 is well-defined at the triply

shaded area of G̃i(p). The path p′ = e1e2 is well-defined at

the grid and solid shaded area of G̃i(p). The part without the
line shading is maximal with respect to e3.

Proof. Take g ∈ Gv an element in some edge-group, and assume that g =
[php−1] where p is an edge-path in Γ and h ∈ Gw some other vertex-group.
Since for any path q the crossing maps satisfy c̃q ◦ c̃q−1 = Id and our path
p is purely vertical, we can assume it doesn’t have any backtracking so has
length at most N , the diameter of the tree Γ.

We now work in the universal covering of G, and so consider two elements
u0 and v0 in a lift of i(p1) such that v−1

0 u0 = g. The two elements u = c̃p(u0)
and v = c̃p(v0) such that v−1u = h satisfy

LΓ(v−1u) ≤ PN (LΓ(v−1
0 u0))

where P is the maximal distortion polynomial for the crossing edge maps.
That is

LΓ(h) ≤ PN (LΓ(g)).

Since g = [php−1]⇔ h = [p−1gp] we also have

LΓ(g) ≤ PN (LΓ(h)).

Since P is increasing over R+ (see Remark 2.7) and LΓ(h) ≤ LΓ(php−1) =
2LΓ(p) + LΓ(h) we eventually get

LΓ(g) ≤ PN (LΓ(php−1))

and seemingly loose polynomial distortion is proved. The last assertion
of the lemma comes from the fact that a composition of quasi-isometric
embeddings is a quasi-isometric embedding. �

If arbitrarily long paths are only defined on finite sets and all the cross-
ing edges maps are polynomial, it implies seemingly polynomial distortion.
However, all the distortion could be made on a single edge, as shown in the
following example.
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Example 3.6. Consider the graph of groups with one single edge e and
two vertices v and w, with Gv = Z2 = 〈a, b|[a, b] = 1〉 and Gw = BS(1, 2) =〈
x, y|yxy−1 = x2

〉
and Ge = Z = 〈t〉. The embeddings are given by ıe(t) = x

and ıē(t) = a. Then the crossing map distorts lengths exponentially.

The property below, about the crossing edge maps in the universal cov-
ering of the graph of groups, will be used to treat graph manifolds.

Definition 3.7. Let G = (Γ, {Ge}, {Gv}, {ıe}) be a graph of groups equipped

with a set of standard length functions, and let TG = (Γ̃, ϕ) be its universal
covering. We say that G has tight dynamics if there exist constants K ≥ 0

and C ≥ 1 such that for any oriented edges ẽ, f̃ of Γ̃ with t(ẽ) = i(f̃), for
any elements a, b in ı̃ē(Ge) such that:

• LΓ(b−1a) ≥ K and

• ẽ is maximal at a or b or both with respect to f̃

then

LΓ(a−1

f̃
c̃ẽ(a)) + LΓ(b−1

f̃
c̃ẽ(b)) ≥

1

C

(
LΓ(b−1a)− LΓ(b−1

f̃
af̃ )
)
.

for af̃ and bf̃ any closest elements respectively to c̃ẽ(a) and c̃ẽ(b) in ı̃f (Gf ).

Figure 3. Tight dynamics: The distance between af̃ and

c̃ẽ(a) plus the one between bf̃ and c̃ẽ(b) has to be larger than

a fixed fraction of the difference of the distances between a
and b with the one between af̃ and bf̃ .

Notice that if LΓ(b−1a) ≤ LΓ(b−1

f̃
af̃ ), then the above inequality is auto-

matically satisfied. The following lemma justifies the introduction of these
notions.
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Lemma 3.8. A graph of groups with tight dynamics and seemingly (loose)
polynomial distortion has (loose) polynomial distortion (with same degree).

Proof. Let TG = (Γ̃, ϕ) be the universal covering of the graph of groups
G = (Γ, {Ge}, {Gv}, {ıe}). Let us consider g ∈ Gv for some v ∈ V and two
reduced TG-sequences r, s of edge-length n with g = [rs−1]. By using the

equivalence relations on TG-sequences, we get edge-paths pi in Γ̃, elements
ai, bi ∈ Gi(pi), 1 ≤ i ≤ l, and (possibly trivial) elements a0, b0 ∈ Gi(p1),
al+1, bl+1 ∈ Gt(pl) and an edge-path pl+1 with the following properties (see
Definition 3.4):

• i(pi+1) = t(pi) and t(pl+1) = t(r),
• pl+1 is well-defined at both al+1 and bl+1,
• pi is maximal both at ai and at bi with respect to the first edge in
pi+1 for 1 ≤ i ≤ l.

By setting

p = (a−1
1 a0, p1, a

−1
2 c̃p1(a1), · · · , a−1

l+1c̃pl(al), pl+1, c̃pl+1
(bl+1)−1c̃pl+1

(al+1)

and
q = (b−1

1 b0, p1, b
−1
2 c̃p1(b1), · · · , b−1

l+1c̃pl(bl), pl+1)

we get
[pq−1] = [rs−1] = g.

Since G seemingly has loose polynomial distortion, there is a polynomial P
such that

LΓ(pq−1) ≤ P (LΓ(rs−1)).

We consider what happens at Gt(p1). Since G has tight dynamics, there are
constants K ≥ 0 and C ≥ 1 such that, if LΓ(g) ≥ K then

LΓ(g)−LΓ(b−1
2 a2) ≤ C

(
LΓ(a−1

1 a0) + LΓ(b−1
1 b0) + LΓ(a−1

2 c̃p1(a1)) + LΓ(b−1
2 c̃p1(b1))

)
Observe that the parenthesis in the right-hand side of this inequality is
smaller than the Γ-length of the segment of pq−1 between the same ele-
ments. We iterate the argument, starting now with b−1

2 a2 instead of g, by
considering successively p2, p3, · · · , pl. Since the Γ-lengths of the various
parts sum up, the above observation on the parenthesis in the right-hand
side of the inequality directly gives

LΓ(g) ≤ CLΓ(pq−1) ≤ CP (LΓ(rs−1))

in the case where we end with pl (that is pl+1 is trivial in the decomposition
given at the beginning of the proof). In the case where we end with a non-
trivial pl+1, the seemingly loose polynomial distortion applied for the last
piece leads to the same conclusion. The proof in the case of seemingly at
most polynomial distortion follows the same scheme. �

The following definition comes from the geometry of relative hyperbolicity,
and will be used to show that mixed manifolds are given by undistorted
graphs of groups in Lemma 4.13 and Proposition 4.14.

Definition 3.9. Let G be a group with finite generating S and length
function LS , and letH = {H1, · · · , Hl} be a finite family of finitely generated
subgroups of G. We say that the family H has at least linear separation if
there exists N ≥ 0 and C ≥ 1 such that, for any 1 ≤ i, j ≤ l, for any u ∈ G,
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if dS(Hi, uHj) = min{LS(γ−1
j γi) | γi ∈ Hi, γj ∈ uHj} = L then, unless i = j

and u ∈ Hi = Hj , for any γi ∈ Hi with LS(γi) ≥ N + L one has

dS(γi, uHj) ≥
1

C
LS(γi).

Notice that a family H with at least linear separation is an almost mal-
normal family of subgroups, meaning that for any 1 ≤ i, j ≤ l, for any g ∈ G,
the cardinality of Hi ∩ g−1Hjg is finite unless i = j and g ∈ Hj = Hi. Def-
inition 3.9 gives rise to the following adaptation in the setting of graph of
groups:

Definition 3.10. Let G = (Γ, {Ge}, {Gv}, {ıe}) be a graph of groups equipped

with a set of standard length functions, and let TG = (Γ̃, ϕ) be its universal
covering. We say that G satisfies the at least linear separation property if

there exists N ≥ 1 such that any reduced edge-path in Γ̃ with edge-length
greater or equal to N contains two consecutive edges e and f such that
{ıe(Ge), ıf̄ (Gf )} forms a family of subgroups of Gt(e) = Gi(f) with at least
linear separation.

Lemma 3.11. A graph of groups with seemingly loose polynomial distortion
and at least linear separation property, has loose polynomial distortion (with
same degree). Similarly, seemingly at most polynomial distortion and at least
linear separation property imply that the graph of groups is undistorted.

Proof. As in Remark 2.8, we consider an element g of some vertex-group Gv
and two reduced G-sequences p, q with edge-lengths n such that g = [pq−1].
We consider their lifts to TG , still denoted by p and q, we may assume that
p starts at a1 = 1Gv and q at b1 = g. Let us assume that n ≥ N3.10, the
constant given by Definition 3.10. Let p1 and q1 be the minimal subsequences
of p and q ending at t(e), where e is the edge of TG given by the same
Definition 3.10. By this definition, the edge-length of p1 is equal to the one
of q1 and bounded above by N3.10. Still with the notations of this definition,
it follows from Definition 3.9 that if c1 and d1 denote the elements at which
end respectively p1 and q1 then at least one of the two does not belong to
ı̃f−1(Gf ). Let us now define

L = d(̃ıe(Ge), ı̃f̄ (Gf ))

and denote by u1, v1 the elements in Gt(e) respectively in p and q starting
at c1 and d1. Then, because of seemingly polynomial distortion, there is a
polynomial P such that

(1) If LΓ(d−1
1 c1) < N3.9, then

LΓ(g) ≤ P (LΓ(p1) + LΓ(q1) +N3.9) ≤ P (LΓ(pq−1) +N3.9).

(2) If N3.9+L > LΓ(d−1
1 c1) ≥ N3.9: by definition of L, LΓ(u1)+LΓ(v1) ≥

L. On another hand, similarly to the previous case we have the
inequality

LΓ(g) ≤ P (LΓ(p1) + LΓ(q1) + L+N3.9)

≤ P (LΓ(p1) + LΓ(q1) + LΓ(u1) + LΓ(v1) +N3.9)

≤ P (LΓ(pq−1) + 2N3.9 +N3.9).
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(3) If LΓ(d−1
1 c1) ≥ L + N3.9, according to Definition 3.9 there is a con-

stant C ≥ 1 such that LΓ(u1) + LΓ(v1) ≥ 1
CLΓ(d−1

1 c1). Hence,

LΓ(g) ≤ P (LΓ(p1) + LΓ(q1) + LΓ(d−1
1 c1))

≤ P (LΓ(p1) + LΓ(q1) + C(LΓ(u1) + LΓ(v1)))

≤ CP ((LΓ(p1) + LΓ(q1) + LΓ(u1) + LΓ(v1)) ≤ CPLΓ(pq−1).

Since each one of the three cases gives a polynomial distortion of the same
degree, and they are exhaustive, the proof of the first assertion is complete.
The second assertion follows the same scheme: the crossing edge maps are
quasi isometric embeddings and at most N3.10 of them are composed before
meeting a vertex where the linear separation is satisfied. �

4. Three dimensional manifolds

In what follows, and in order to set aside some trivial cases, manifolds
considered are assumed to be genuine.

Definition 4.1. A genuine 3-manifold is a 3-manifold M with the following
properties:

(1) M is compact, connected, irreducible, orientable and with infinite
fundamental group.

(2) M is not finitely covered by a torus bundle.
(3) M is ∂-irreducible: if M has a non-empty boundary ∂M , then ∂M

is a union of tori such that the embedding of each of these tori into
the manifold is π1-injective.

Genuine manifolds cannot have Sol geometry as it is virtually a torus
bundle over S1.

4.1. Seifert manifolds. We refer the reader to [20] for instance, among
others, for background about Seifert manifolds.

Definition 4.2. A fibred solid torus of type (p, q) is the suspension

T2
p,q = D2 × [0, 1]/(x, 1) ∼ (r(x), 0)

of a rotation r of the disc D2 centered at the origin and of angle 2πp
q . The

type, or the fibred torus, is trivial if the rotation r is the identity. The fibers
of T2

p,q are the orbits of the rotation r.

(1) A Seifert manifold is a genuine 3-manifold M which is a union of
disjoint circles Cα, called the fibers of M , such that each Cα admits
a closed neighborhood T (Cα) which is a union of fibers, and home-
omorphic by a fiber-preserving homeomorphism hα to some fibred
solid torus, whose type gives the type of the fiber.

(2) A fiber Cα in a Seifert manifold is regular if the homeomorphism hα
above carries T (Cα) to the trivial fibred torus.

(3) If M is a Seifert manifold, the map πM : M → B which identifies
each fiber to a point is called a Seifert fibration with base B.

Equivalently, a genuine 3-manifold is a Seifert manifold if and only if it
admits a foliation by circles, see [9]. We now gather some classical results
about Seifert manifolds.
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Proposition 4.3. Let M be a Seifert manifold.

(1) The base B of the Seifert fibration of M is a 2-dimensional orbifold
with hyperbolic orbifold fundamental group πo1(B).

(2) All the regular fibers are homotopic. The element of the fundamental
group of M defined by a regular fiber is contained in the center of
the group. Moreover, if the base is orientable, then it is equal to the
center and the fundamental group of M is a central extension:

1→ Z→ π1(M)→ πo1(B)→ 1

(3) If the base of the Seifert fibration is non-orientable then there is a
double-cover of M which admits a Seifert fibration with orientable
base.

(4) If M has non-empty boundary, then each boundary component is a
union of regular fibers, so ∂M is a union of tori.

Proof. For items (1) and (2), see [17][Theorems 12.1 and 12.2] for instance:
the definition of genuine manifold rules out the few cases where the base
has not hyperbolic fundamental group (as an orbifold). Item (3) relies on
[21][Proposition 3.1] which, in the case where πM : M → B is a Seifert
fibration with non-orientable base B, gives the existence of a Seifert fibration
πM : M → B with orientable base B and a continuous map p : M →M such
that the following diagram commutes:

M
p−−−−→ MyπM yπM

B
p−−−−→ B

where p : B → B is the orientable double-cover of B. In particular, the pre-
image of any fiber Cα of M under the map p consists of two fibers of the same
type as Cα, so that p is a local homeomorphism and M is a double-cover of
M . Item (4) is a classic, straightforward consequence of the definition of a
Seifert manifold. �

According to Noskov [26], a central extension of any word hyperbolic
group has Rapid Decay property, hence Item (1) of Proposition 4.3 above
we conclude the following

Corollary 4.4. The fundamental group of any Seifert manifold has the
Rapid Decay property.

A boundary subgroup is a subgroup of the fundamental group of a manifold
M defined by some boundary component of ∂M . An incompressible surface
S in M is an embedded surface i : S →M such that i# : π1(S)→ π1(M) is
injective and i(S) is not parallel to a boundary component, i.e. cannot be
isotoped into the boundary of M .

Lemma 4.5. Let M be a Seifert manifold with non-empty boundary ∂M .

(1) M is finitely covered by S2 × S1, a trivial surface bundle over S1.
(2) For any two boundary subgroups H1, H2, and any element g ∈ π1(M),

then
g−1H1g ∩H2 = 〈z〉,
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if z ∈ π1(M) is the element defined by the regular fiber, unless H1 =
H2 and g ∈ H1 = H2 = Z2. Moreover, the boundary subgroups
are quasi isometrically embedded in the fundamental group of the
manifold.

Proof. Item (1): This is a classical result, we summarize here the idea in

[19][VI.26, page 103] (see also [14] for another point of view): since M has
non-empty boundary and is ∂-irreducible, by Poincaré duality the non-trivial
element z ∈ H1(M ;Z) defined by a regular fiber has infinite order and is
dual to a non-trivial element in H2(M,∂M ;Z) (see [34][Lemma 1]); hence
all the regular fibers are transverse to, and intersect positively, a same 2-
sided, non-separating incompressible surface S embedded in M , which is
a representative of the image of z ∈ H1(M ;Z) in the dual H2(M,∂M ;Z);
since the regular fibers are positive powers of each exceptional fiber, these
last ones also intersect positively S; it follows that S is a cross-section to
a flow whose all orbits are closed since these are the fibers of the Seifert
fibration. Hence M is a mapping-torus of a finite-order homeomorphism of
S.

Item (2): Take T1, T2 ⊆ ∂M two boundary tori such that Hi = π1(Ti) for
i = 1, 2. Since the boundary of a Seifert manifold is a union of regular fibers,
by Proposition 4.3 (2) the fundamental group of the regular fiber is in the
center of the fundamental group π1(M), and hence we have the inclusion
〈z〉 ⊆ g−1H1g ∩ H2. If there is another element in g−1H1g ∩ H2 then this
intersection contains a power of the element γ represented by some boundary
component in ∂S ∩ T2: indeed each boundary subgroup of M is generated
by the regular fiber and an element in the torus which intersects it exactly
once (a meridian); thus, if g−1H1g ∩H2 contains an element distinct from
the regular fiber then it contains a power of this meridian and therefore a
power of γ since H2 is abelian. Since S is the fiber of the fibration given
by Item (1), the subgroup N that it defines is normal in π1(M). It follows
that gγlg−1 ∈ H1 ∩ N . Since γl is a power of the element defined by a
boundary circle of S then so is the element gγlg−1. The only possibility is
two boundary circles in ∂S being homotopic. This implies that they either
belong to the same boundary torus of M , or S is an annulus, that is M
is the mapping-torus of a homeomorphism of the annulus. In the former
case, they are homotopic in the boundary torus, which does not agree with
g /∈ H. The latter case in turn implies that M is finitely covered by a torus
bundle over the interval: this possibility has been ruled out in the definition
of a genuine 3-manifold, hence the conclusion. �

4.2. Atoroidal 3-manifolds. A compact 3-manifold is atoroidal if it does
not contain any incompressible torus non isotopic to a boundary torus (if
any). The Geometrization Theorem ([27] - see [1] for a complete text) clas-
sifies the possible geometries, hence the fundamental groups.

Proposition 4.6. The fundamental group of any genuine atoroidal 3-manifold
has the Rapid Decay property.

Proof. By the Geometrization Theorem, a closed orientable atoroidal ir-
reducible 3-manifold or the interior of an orientable atoroidal irreducible
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3-manifold which has tori in its boundary, admits one of the eight following
geometries, namely:

E3, H3, S3, S2 × R, H2 × R, S̃L2(R), Nil and Sol

For the H3-geometry, i.e. hyperbolic manifolds, a result of Jolissaint [22][Theorem
3.2.1] gives the Rapid Decay property for the fundamental group of closed
such manifolds. In the case of tori in the boundary, the Rapid Decay prop-
erty comes from [10] (the fundamental group is strongly hyperbolic relative
to the boundary subgroups) and [3] (a group which is strongly hyperbolic
relative to polynomial growth subgroups has the Rapid Decay property).

By [31], the six geometries E3, S3,S2 × R,H2 × R, S̃L2R and Nil are Seifert
manifolds, treated in Corollary 4.4. �

4.3. Graph manifolds. Our next class of 3-dimensional manifolds is given
by gluing together Seifert manifolds along incompressible tori, and the goal
of this subsection is to prove Proposition 1.4.

Definition 4.7. A graph manifold is a genuine 3-manifold M which admits
a finite, non-empty collection of incompressible tori T1, · · · , Tr such that the
closure of each connected component of M \

⋃r
i=1 Ti is a Seifert manifold.

Remark 4.8. The fundamental group of a graph manifold is the fundamen-
tal group of a graph of groups G = (Γ, {Ge}, {Gv}, {ıe}) whose vertex-groups
are fundamental groups of Seifert manifolds with boundary, edge-groups are
π1(Ti) = Z⊕ Z subgroups and each morphism ıe from an edge-group into a
vertex-group is induced by a homemorphism of the torus, with image some
boundary component of the associated Seifert manifold. The requirement
for a Seifert manifold to be genuine (see Definition 4.1) forbids (finite covers
of) torus bundles in the decomposition of a graph manifold into Seifert man-
ifolds. This is not a restriction because a graph manifold is also genuine,
hence is not a torus bundle over S1. Thus such a component would be the
mapping-torus of a homeomorphism of the annulus, which can be omitted
by changing the gluing homeomorphism of its boundary components to the
other Seifert components.

To show that a graph of groups describing a graph manifold has at most
polynomial distortion, which is the content of Proposition 1.4, the strategy
is to prove seemingly polynomial distortion, as well as tight dynamics, and
conclude using Lemma 3.8.

Lemma 4.9. Let G = π1(M), where M is a graph manifold, and let
T1, · · · , Tr be a family of incompressible tori such that the closure of each
connected component Sj of M \

⋃r
i=1 Ti is a Seifert manifold. Thus G =

π1(G) where G = (Γ, {Ge}, {Gv}, {ıe}) is a graph of groups whose vertex-
groups are fundamental groups of Seifert manifolds with boundary, edge-
groups are π1(Ti) = Z ⊕ Z subgroups and each morphism ıe from an edge-
group into a vertex-group is induced by a homemorphism of the torus, with
image some boundary component of the associated Seifert manifold.

(1) G seemingly has at most polynomial distortion (Definition 3.1), in
fact is seemingly undistorted.

(2) G has tight dynamics (Definition 3.7).
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We first need to understand the behavior of the gluing homeomorphisms.
Recall that an orientation-preserving diffeomorphism φ : T2 → T2 is called
Anosov if there is λ > 1 and an eigenspace decomposition of the tan-
gent bundle TT2 = T uT2 ⊕ T sT2 such that at each point x ∈ T2,one has
||Dxφ(v)|| = λ||v|| (resp. ||Dxφ(v)|| = 1

λ ||v||) for all v ∈ T uxT2 (resp. for all

v ∈ T sxT2). From the Nielsen-Thurston classification (see [11] for instance),
any orientation-preserving homeomorphism of the torus T2 which is not iso-
topic to a periodic homeomorphism, nor to an Anosov homeomorphism is
isotopic to a reducible homeomorphim which fixes a simple closed curve C
and acts as a twist on the annulus T2 \ {C}. Since we are only interested in
the action of the gluing homeomorphisms on the fundamental group of the
torus, we may thus assume that they are either periodic (i.e. finite-order),
Anosov, or reducible. Moreover, from [13] and [25], any Anosov diffeomor-
phism of the torus is conjugate to a linear one, that is defined by a linear
map of R2 whose matrix is in SL2(Z) with no eigenvalues of modulus 1. We
thus only have to deal with linear Anosov maps.

Definition 4.10. Let φ be a linear Anosov diffeomorphism, and denote by
vu, vs the unit eigenvectors associated to the eigenvalues λφ > 1 and 1

λφ
< 1.

Any element γ of the fundamental group of the torus corresponds to a vector
vγ (with integer coefficients in the canonical basis). In the basis given by
(vu, vs) we have vγ = au(γ)vu + as(γ)vs. The φ-foliation length of γ, is
defined by

|γ|φ = |au(γ)|+ |as(γ)|
and coincides with the length of γ in the generating set {vu, vs}. The φ-slope
of γ, is given by

slφ(γ) =
|au(γ)|
|as(γ)|

.

The following lemma concerning linear Anosov diffeomorphisms is classic,
but we include it here for completeness because we couldn’t find a reference.

Lemma 4.11. Let φ : T2 → T2 be a linear Anosov diffeomorphism of the
torus. For any γ ∈ π1(T2) = 〈S〉, with S a fixed finite generating set, there
exists Mγ ≥ 0 such that for any n ∈ Z:

(1) minj∈Z{LS(φj(γn))} is attained for −Mγ ≤ j ≤Mγ and LS(φj(γn)) >
LS(γn) for |j| > Mγ. In particular, no element γ is sent by φ to a
power of itself. Moreover LS(φj(γn)) grows exponentially in n, for
any |j| ≥Mγ.

(2) If η ∈ π1(T2) is such that {γ, η} generate π1(T2) then there is Cγ,η ≥
1 such that, if φj(γn) = γunηvn with LS(φj(γn)) < LS(γn) then
LS(ηvn) ≥ 1

Cγ,η
LS(γn).

Proof. Since S is finite, the word metric is quasi-isometric to the metric
given by the φ-foliation length, so it is enough to prove the lemma for this
φ-foliation length defined above.

Item (1): It suffices to do the case n = 1. The general case follows from

the equality slφ(γ) = slφ(γn) for any n ∈ Z, which is deduced straight from
the definition of slφ(γ). A simple calculation gives the equivalence:

|φ(γ)|φ < |γ|φ ⇔ slφ(γ) < λφ,



DISTORTION AND 3-MANIFOLDS 23

showing that the slope is bounded, and the equality

slφ(φ(γ)) = λ2
φslφ(γ),

implying that the slope grows applying φ. Of course the analogous relations
hold when applying φ−1, namely |φ−1(γ)|φ < |γ|φ ⇔ slφ(γ) > 1

λφ
, and

hence slφ(φ−1(γ)) = 1
λ2
φ
slφ(γ). In both cases, since λφ > 1 the minimum is

attained after a number of iterations which only depends on slφ(γ) and λφ.

Item (2): We first consider the jth power at which the minimum given

by Item (1) is attained. Then slφ(γunηvn) is close (that is up to a constant
depending only on φ, γ) to 1. Since slφ(γun) = slφ(γ), a simple computation
gives a constant D ≥ 1, depending on γ and η, such that the power of η at
this minimum is at least D times the power of γ. Since −Mγ ≤ j ≤Mγ and
j 6= 0, it follows the existence of such a constant D for each one of these
powers. We so get the existence of a constant Cγ,η ≥ 1 such that for any

integer n, the length of the power of η in φj(γn) is at least
1

Cγ,η
times the

length of γn. �

We can now prove Lemma 4.9

Proof of Lemma 4.9. Part (1): Seemingly polynomial distortion. Since the
boundary subgroups of the Seifert manifolds are quasi isometrically embed-
ded, the crossing edge maps are quasi isometric embedding. If the edge-
length of a reduced edge-path is strictly greater than the diameter D of the
maximal tree in Γ, this edge-path contains a loop. If all reduced edge-paths
p such that there exist vertex-elements g and h with [g] = [p−1hp] as in
Definition 3.1 have edge-length smaller than D+ 1 then G seemingly has at
most polynomial distortion, in fact is undistorted, since a finite composition
of q.i. embeddings is a q.i. embedding. Without loss of generality, it is thus
sufficient to consider a simple loop p = e1 · · · el in Γ. It follows from Lemma
4.5 (2) that, to prove the seemingly at most polynomial distortion, we only
have to study what happens to (the powers of the) element defined by the
regular fibers of the Seifert manifolds associated to the vertex-groups when
“passing through p”. To be more precise, let us choose arbitrarily one of
them, say Gv with v = i(p), and let us denote by γ this element. We de-
note by ηl the element defined by the meridian of the boundary component
corresponding to the subgroup ıel(Gel). We want to understand the form
of cp(γ) = cel ◦ cel−1

◦ · · · ◦ ce1(γ). By the Nielsen-Thurston classification
and Lemma 4.11, the three possibilities are (we recall that each fiber of each
boundary component is a regular fiber - see Lemma 4.3):

Case 1: cp(γ
n) = γ±n and the length of γ is preserved.

Case 2: cp(γ
n) = γ±nηnml for some non-zero integer m.

Case 3: cp(γ
n) = γnjηnml for some integer j with |j| 6= 1 and non-zero integer

m.

In case 1 the length is preserved so no distortion. In cases 2 and 3, there
is no edge-path q containing p for which there exist elements g and h with
[g] = [q−1hq]. It follows that G seemingly has at most polynomial distortion,
in fact is seemingly undistorted.
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Part (2): Tight dynamics. We consider an edge e with vertices v = i(e)

and w = t(e), we need to understand the crossing map ce on γv and γw the
regular fibers of the Seifert manifolds associated to Gv and Gw and η the
meridian of Gw.

If ce(γ
n
v ) satisfies Cases 1 or 2 above, then the first condition of Definition

3.7 is satisfied.
Let us thus assume that ce(γ

n
v ) satisfies Case 3. If j 6= 0, ce is induced by a

pseudo-Anovov homeomorphism. Assume first that LGw(ce(γ
n
v )) ≥ LGv(γnv )

holds. Then either the first condition of Definition 3.7 is satisfied or the
exponential dilatation given by Item (1) of Lemma 4.11 gives us a constant
C ≥ 1, depending only on G, such that the length of ηmn in ce(γ

n
v ) is at

least 1
C times the length of γnv .

If ce(γ
n
v ) satisfies Case 3, we therefore only have to consider the case where

LGw(ce(γ
n
v )) < LGv(γ

n
v ) holds. Item (3) of Lemma 4.11 gives in this case a

constant C ≥ 1, depending only on G, such that the length of ηmn in ce(γ
n
v )

is at least 1
C times the length of γnv .

We still have to prove that there is at least “linear divergence” from the
other boundary subgroups, and their left-classes, when the power of η in-
creases in order to get the constant C required in the second alternative
of Definition 3.7. By Item (1) of Lemma 4.5, the Seifert manifold fibers
over the circle with fiber a surface S. The geodesics associated to elements
defined by the boundary circles in ∂S of two distinct boundary components
of the manifold, or a boundary circle and a non-trivial conjugate of it, di-
verge exponentially in the surface. Since the monodromy is of finite order
(Item (1) of Lemma 4.5), the same assertion holds in the 3-manifold. From
Item (2) of Lemma 4.5, this exponential divergence also holds between the
cyclic subgroup 〈η〉 and any (left-class of a) different boundary subgroup,
or any different left-class of the same boundary subgroup. Hence the ex-
istence of a constant C ≥ 1 as announced. The case j = 0 in Case 3 is
now straightforward from which precedes. We so proved that G has tight
dynamics. �

Proof of Proposition 1.4. Combine the above result with Lemma 3.8. �

4.4. Mixed 3-manifolds. We borrow the terminology of mixed 3-manifold
from [29] and call mixed 3-manifold any genuine atoroidal 3-manifold which
is neither a Seifert nor a graph manifold. The structure of mixed manifolds is
well-understood since the celebrated JSJ-decomposition, that we now recall.

Theorem 4.12 (JSJ-decomposition, [20]). Given any mixed 3-manifold M ,
there exist a possibly empty family of maximal Seifert or graph submanifolds
J1, · · · , Jr in M and of incompressible tori T1, · · · , Tl not belonging to these
former submanifolds such that the closure of each connected component of

M \ (
⋃r
i=1 Ji∪

⋃l
i=1 Ti) is a compact 3-manifold with hyperbolic interior, the

boundary of which is a union of incompressible tori.

The JSJ-decomposition gives us the following graph of groups decompo-
sition of the fundamental group of a mixed manifold.

Lemma 4.13. The fundamental group of a mixed 3-manifold M is the fun-
damental group of a graph of groups G with the following properties:



DISTORTION AND 3-MANIFOLDS 25

(1) The vertex-groups are fundamental groups of genuine 3-manifolds
with boundary tori which have either hyperbolic interior, in which
case are termed hyperbolic vertices, or are Seifert or graph mani-
folds. The edge-groups are Z⊕Z-subgroups. The edge-morphisms are
induced by tori-homeomorphisms and their images are the boundary
subgroups of the vertex-groups, into which they are quasi isometri-
cally embedded.

(2) For any edge e, if some vertex-group of e is the fundamental group
of a Seifert or graph manifold, then the other one is a hyperbolic
vertex.

(3) The graph of groups G satisfies the at least linear separation property
and seemingly has at most polynomial distortion, in fact is seemingly
undistorted.

Proof. Part (1). Consider any Seifert or graph submanifold M1 in the de-
composition of M given by Theorem 4.12. It is not separated from another
Seifert or graph manifold M2 by an incompressible torus because other-
wise M1 ∪M2 is a graph submanifold of M containing both M1 and M2

which is a contradiction with the maximality of the submanifolds in the
JSJ-decomposition of Theorem 4.12.

Part (2). Any Seifert or graph submanifold in this decomposition is glued
along its boundary tori to manifolds with hyperbolic interior. Since the in-
compressible tori given by Theorem 4.12 might only belong to submanifolds
with hyperbolic interior, the conclusion follows.

Part (3). The collection of boundary subgroups of the fundamental group
of a finite volume manifold with hyperbolic interior M is an almost mal-
normal collection H of Z2 coming from the incompressible tori T1, · · · , Tl
satisfying the following (also called Bounded Coset Penetration Property,
see [10] - this is a key-point in proving that the fundamental group of the
manifold being strongly relatively hyperbolic with respect to the boundary
subgroups):

There are constants C,D > 0 such that, for any two distinct boundary
subgroupsH0, H1 ∈ H and elements li ∈ Hi (i = 0, 1), geodesics representing
l0 and l1 are D-close one to each other along a length of at most C and
outside this region diverge exponentially. This also holds for any loop in
Hi and a conjugate by an element g /∈ Hi. This is a consequence of the
malnormality and the thinness of the geodesic rectangles not contained in
the boundary subgroups.

This bounded coset penetration property implies the at least linear sep-
aration property of Definition 3.9 for the family formed by the embeddings
of the edge-subgroups into any hyperbolic vertex-group. Part (2) of this
lemma implies that in any G-sequence any vertex-group which is not hy-
perbolic is preceded and followed by a hyperbolic vertex-group. Hence G
satisfies the at least linear separation property of Definition 3.10. Since the
embeddings of the boundary tori in graph, Seifert or hyperbolic manifolds
are quasi isometric embeddings, this same argument gives the seemingly at
most polynomial distortion, in fact seemingly undistortion since a composi-
tion of q.i. embeddings is a q.i. embedding. �
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Lemma 4.13 gives readily gives the following

Proposition 4.14. The graph of groups G is undistorted.

Proof. This is implied by (3) of Lemma 4.13 and Lemma 3.11. �

Corollary 4.15. Fundamental groups of mixed 3-manifolds have Rapid De-
cay property.

Proof. This comes from Proposition 1.3, combined with Proposition 4.14
with the fact that all the vertex subgroups have Rapid Decay property
(Propositions 4.6 and 1.4). �
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